zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters. (English) Zbl 1198.93006
Summary: This work is devoted to investigating the anti-synchronization between two novel different chaotic systems. Two different anti-synchronization methods are proposed. Active control is applied when system parameters are known and adaptive control is employed when system parameters are uncertain or unknown. Controllers and update laws of parameters are designed based on Lyapunov stability theory. In both cases, sufficient conditions for the anti-synchronization are obtained analytically. Finally, a numerical simulations is presented to show the effectiveness of the proposed chaos anti-synchronization schemes. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

93-04Machine computation, programs (systems and control)
93D15Stabilization of systems by feedback
34H10Chaos control (ODE)
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[2] Xian, Yong Wu; Zhang, Hongmin: Synchronization of two hyperchaotic systems via adaptive control, Chaos, solitons & fractals 39, 2268-2273 (2009) · Zbl 1197.37046 · doi:10.1016/j.chaos.2007.06.100
[3] Yassen, M. T.: Adaptive control and synchronization of a modified chuas circuit system, Appl math comput, 113-128 (2003) · Zbl 1038.34041 · doi:10.1016/S0096-3003(01)00318-6
[4] Huang, L. L.; Feng, R. P.; Wang, M.: Synchronization of chaotic systems via nonlinear control, Phys lett A 320, 271-275 (2004) · Zbl 1065.93028 · doi:10.1016/j.physleta.2003.11.027
[5] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalence of unidirectionally coupled dynamical systems, Phys rev lett 76, 1816-1819 (1996)
[6] Kilic, R.: Experimental study on impulsive synchronization between two modified chuas circuits, Nonlinear anal R word appl 7, 1298-1303 (2006) · Zbl 1130.37359 · doi:10.1016/j.nonrwa.2005.12.004
[7] Taherional, S.; Lai, Y. C.: Observability of lag synchronization of coupled chaotic oscillators, Phys rev E 59, 6247-6250 (1999)
[8] Yan, J. P.; Li, C. P.: Generalized projective synchronization of a unified chaotic system, Chaos, solitons & fractals 26, No. 4, 1119-1124 (2005) · Zbl 1073.65147 · doi:10.1016/j.chaos.2005.02.034
[9] Chen, S. H.; Hu, J.; Wang, C. P.; Lu, J. H.: Adaptive synchronization of uncertain Rössler hyperchaotic system based on parameter identification, Phys lett A 321, 50-55 (2004) · Zbl 1118.81326 · doi:10.1016/j.physleta.2003.12.011
[10] Yassen, M. T.: Adaptive control and synchronization of a modified Chua’s circuit system, Appl math comput 135, 113-128 (2003) · Zbl 1038.34041 · doi:10.1016/S0096-3003(01)00318-6
[11] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of Lu system with uncertain parameters, Chaos, solitons & fractals 21, 657-667 (2004) · Zbl 1062.34039 · doi:10.1016/j.chaos.2003.12.028
[12] Marino, I. P.; Miguez, J.: An approximate gradient-descent method for joint parameter estimation and synchronization of coup led chaotic systems, Phys lett A 351, No. 4 -- 5, 262-267 (2006)
[13] Walnut, D. F.: An introduction to wavelet analysis, (2001) · Zbl 0989.42014
[14] Yang, S. S.; Duan, K.: Generalized synchronization in chaotic systems, Chaos, solitons & fractals 10, 1703-1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[15] Michael, G. Rosenblum; Arkady, S. Pikovsky; Kurths, Jurgen: Phase synchronization of chaotic oscillators, Phys rev lett 76, 1804-1807 (1996) · Zbl 0896.60090
[16] Taherion1, S.; Lai, Y. C.: Observability of lag synchronization of coupled chaotic oscillators, Phys rev E 59, 6247-6250 (1999)
[17] Zhang, Y.; Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation, Phys lett A 330, 442-447 (2004) · Zbl 1209.37039 · doi:10.1016/j.physleta.2004.08.023
[18] Liu, J. B.; Ye, C. F.; Zhang, S. J.; Song, W. T.: Anti-phase synchronization in coupled map lattices, Phys lett A 274, 27-29 (2000) · Zbl 1050.37518 · doi:10.1016/S0375-9601(00)00522-3
[19] Shil’nikov, L. P.: Chua’s circuit: rigorous results and future problems, Int J bifurcation chaos 4, 489-519 (1994) · Zbl 0870.58072 · doi:10.1142/S021812749400037X
[20] Sachdev, P. L.; Sarthy, R.: Periodic and chaotic solutions for a nonlinear system arising from a nuclear spin generator, Chaos, solitons & fractals 4, No. 11, 2015-2041 (1994) · Zbl 0812.34042 · doi:10.1016/0960-0779(94)90118-X
[21] Hegazi, A. S.; Agiza, H. N.; El Dessoky, M. M.: Controlling chaotic behaviour for spin generator and Rössler dynamical systems with feedback control, Chaos, solitons & fractals 12, 631-658 (2001) · Zbl 1016.37050 · doi:10.1016/S0960-0779(99)00192-7
[22] Hegazi, A. S.; Agiza, H. N.; El Dessoky, M. M.: Synchronization and adaptive synchronization of nuclear spin generator system, Chaos, solitons & fractals 12, 10919 (2001) · Zbl 1022.81804 · doi:10.1016/S0960-0779(00)00022-9
[23] Molaei, M. R.; Umut, Ömür: Generalized synchronization of nuclear spin generator system, Chaos, solitons & fractals 37, No. 1, 227-232 (2008) · Zbl 1147.93386 · doi:10.1016/j.chaos.2006.08.035