zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive anti-synchronization of different chaotic dynamical systems. (English) Zbl 1198.93013
Summary: We have observed anti-synchronization phenomena in different chaotic dynamical systems. Anti-synchronization can be characterized by the vanishing of the sum of relevant variables. Anti-synchronization problem for different chaotic dynamical systems with fully unknown parameters in response system is analyzed. This technique is applied to achieve anti-synchronization between Lorenz system, Lü system and Four-scroll system. Numerical simulations are provided to verify the effectiveness of the proposed methods. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
93-04Machine computation, programs (systems and control)
93D15Stabilization of systems by feedback
34H10Chaos control (ODE)
37D45Strange attractors, chaotic dynamics
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-830 (1990) · Zbl 0938.37019
[2] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys rev lett 76, 1816-1819 (1996)
[3] Yang, S. S.; Duan, K.: Generalized synchronization in chaotic systems, Chaos, solitons & fractals 10, 1703-1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[4] Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A.: Lag synchronization in time-delayed systems, Phys lett A 292, 320-324 (2002) · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[5] Zhang, Y.; Sun, J.: Chaotic synchronization and anti-synchronization based on suitable separation, Phys lett A 330, 442-447 (2004) · Zbl 1209.37039 · doi:10.1016/j.physleta.2004.08.023
[6] Li, Guo-Hui; Zhou, Shi-Ping: Anti-synchronization in different chaotic system, Chaos, solitons & fractals 32, 516-520 (2007)
[7] Hu, Jia; Chen, Shihua; Chen, Li: Adaptive control for anti-synchronization of Chua’s chaotic system, Phys lett A 339, 455-460 (2005) · Zbl 1145.93366 · doi:10.1016/j.physleta.2005.04.002
[8] Li, Guo-Hui; Zhou, Shi-Ping: An observer-based anti-synchronization, Chaos, solitons & fractals 29, 495-498 (2006) · Zbl 1147.93317 · doi:10.1016/j.chaos.2005.08.030
[9] Liu, J. B.; Ye, C. F.; Zhang, S. J.; Song, W. T.: Anti-phase synchronization in coupled map lattices, Phys lett A 274, 27-29 (2000) · Zbl 1050.37518 · doi:10.1016/S0375-9601(00)00522-3
[10] Wedekind, I.; Parlitz, U.: Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers, Int J bifur chaos 11, No. 4, 1141-1147 (2001)
[11] Kim, C. M.; Rim, S. H.; Key, W.: Anti-synchronization of chaotic oscillators, Phys lett A 320, 39-46 (2003) · Zbl 1098.37521
[12] Lorenz, E. N.: Deterministic non-periodic flows, J atmos sci 20, 130-141 (1963)
[13] Sparrow, C.: The Lorenz equations, bifurcation, chaos and strange attractors, (1982) · Zbl 0504.58001
[14] Lü, J.; Chen, G.: A new chaotic attractor coined, Int J bifur chaos 12, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[15] Lü, J.; Chen, G.; Zhang, S.: The compound structure of a new chaotic attractor, Chaos, solitons & fractals 14, 669-672 (2002) · Zbl 1067.37042 · doi:10.1016/S0960-0779(02)00007-3
[16] Chen, G.; Ueta, T.: Yet another chaotic attractor, Int J bifur chaos 9, No. 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[17] Lu, J.; Chen, G.; Cheng, D.; Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system, Int J bifur chaos 12, 2917-2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[18] Liu, W.; Chen, G.: Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?, Int J bifur chaos 14, No. 4, 1395-1403 (2004) · Zbl 1086.37516 · doi:10.1142/S0218127404009880
[19] Logemann, Hartmut; Ryan, Eugene P.: Asymptotic behaviour of nonlinear systems, Am math mon 111, No. 10, 864-889 (2004) · Zbl 1187.34068 · doi:10.2307/4145095