zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-range-dependent exponential $H\infty $ synchronization of a class of delayed neural networks. (English) Zbl 1198.93179
Summary: This article aims to present a multiple delayed state-feedback control design for exponential $H\infty $ synchronization problem of a class of delayed neural networks with multiple time-varying discrete delays. On the basis of the drive-response concept and by introducing a descriptor technique and using Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for exponential $H\infty $ synchronization of the drive-response structure of neural networks are driven in terms of linear matrix inequalities (LMIs). The explicit expression of the controller gain matrices are parameterized based on the solvability conditions such that the drive system and the response system can be exponentially synchronized. A numerical example is included to illustrate the applicability of the proposed design method. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

93D15Stabilization of systems by feedback
37N35Dynamical systems in control
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Pecora, L. M.; Carrol, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-823 (1990) · Zbl 0938.37019
[2] Zhang, H.; Wang, Z.; Liu, D.: Robust exponential stability of recurrent neural networks with multiple time-varying delays, IEEE trans circ syst II: Express briefs 54, No. 8, 730-734 (2007)
[3] Wang, Z.; Liu, Y.; Yu, L.; Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters, Phys lett A 356, 346-352 (2006) · Zbl 1160.37439 · doi:10.1016/j.physleta.2006.03.078
[4] Mou, S. S.; Gao, H. J.; Qiang, W. Y.; Chen, K.: New delay-dependent exponential stability for neural networks with time delay, IEEE trans syst man cybernet part B -- cybernet 38, No. 2, 571-576 (2008)
[5] Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Delay-dependent exponential stability for a class of neural networks with time delays, J comput appl math 183, 16-28 (2005) · Zbl 1097.34057 · doi:10.1016/j.cam.2004.12.025
[6] Mou, S. S.; Gao, H. J.; Lam, J.; Qiang, W. Y.: A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay, IEEE trans neural networks 19, No. 3, 532-535 (2008)
[7] Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Global robust exponential stability analysis for interval recurrent neural networks, Phys lett A 325, 124-133 (2004) · Zbl 1161.93335 · doi:10.1016/j.physleta.2004.03.038
[8] Cheng, C. J.; Liao, T. L.; Yan, J. J.; Hwang, C. C.: Exponential synchronization of a class of neural networks with time-varying delays, IEEE trans syst man cybernet part B: cybernet 36, No. 1, 209-215 (2006)
[9] Lu, H.; Van Leeuwen, C.: Synchronization of chaotic neural networks via output or state coupling, Chaos, solitons & fractals 30, 166-176 (2006) · Zbl 1144.37377 · doi:10.1016/j.chaos.2005.08.175
[10] Hou, Y. Y.; Liao, T. L.; Yan, J. J.: H$\infty $ synchronization of chaotic systems using output feedback control design, Physics A 379, 81-89 (2007)
[11] Lu, J.; Cao, J.: Synchronization-based approach for parameters identification in delayed chaotic neural networks, Physics A 382, 672-682 (2007)
[12] Gao, H. J.; Lam, J.; Chen, G. R.: New criteria for synchronization stability of general complex dynamical networks with coupling delays, Phys lett A 360, No. 2, 263-273 (2006) · Zbl 1236.34069
[13] Sun, Y.; Cao, J.; Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing 70, 2477-2485 (2007)
[14] Yu, W.; Cao, J.: Synchronization control of stochastic delayed neural networks, Physics A 373, 252-260 (2007)
[15] Cheng, C. J.; Liao, T. L.; Yan, J. J.; Hwang, C. C.: Synchronization of neural networks by decentralized feedback control, Phys lett A 338, 28-35 (2005) · Zbl 1136.37366 · doi:10.1016/j.physleta.2005.01.082
[16] Li, P.; Cao, J.; Wang, Z.: Robust impulsive synchronization of coupled delayed neural networks with uncertainties, Physics A 373, 261-272 (2007)
[17] Liao, T. L.; Tsai, S. H.: Adaptive synchronization of chaotic systems and its application to secure communication, Chaos, solitons & fractals 11, No. 9, 1387-1396 (2000) · Zbl 0967.93059 · doi:10.1016/S0960-0779(99)00051-X
[18] Feki, M.: An adaptive chaos synchronization scheme applied to secure communication, Chaos, solitons & fractals 18, 141-148 (2003) · Zbl 1048.93508 · doi:10.1016/S0960-0779(02)00585-4
[19] Sun, Y.; Cao, J.: Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation, Phys lett A 364, 277-285 (2007) · Zbl 1203.93110 · doi:10.1016/j.physleta.2006.12.019
[20] Zhou, J.; Chen, T.; Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification, Chaos, solitons & fractals 27, 905-913 (2006) · Zbl 1091.93032
[21] Yu W, Cao J. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks. In: Chaos, vol. 16, Article no. 023119; 2006. · Zbl 1146.93371
[22] Chen, M.; Zhou, D.; Shang, Y.: A new observer-based synchronization scheme for private communication, Chaos, solitons & fractals 24, 1025-1030 (2005) · Zbl 1069.94508
[23] Cao, J.; Li, P.; Wang, W.: Global synchronization in arrays of delayed neural networks with constant or delayed coupling, Phys lett A 353, 318-325 (2006)
[24] Cai, G. P.; Huang, J. Z.; Yang, S. X.: An optimal control method for linear systems with time delay, Comput struct 81, 1539-1546 (2003)
[25] Niculescu, S. I.: Delay effects on stability: a robust control approach, (2001) · Zbl 0997.93001
[26] Krasovskii, N. N.: Stability of motion, (1963) · Zbl 0109.06001
[27] Gu K. An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE conference on decision and control; 2000. p. 2805 -- 10.
[28] Cao, J.: Periodic oscillation and exponentially stability of delayed cnns, Phys lett A 270, 157-163 (2000)
[29] Chen, A.; Cao, J.; Huang, L.: Global robust stability of interval cellular neural networks with time-varying delays, Chaos, solitons & fractals 23, 787-799 (2005) · Zbl 1101.68752
[30] Khalil, H. K.: Nonlinear systems, (1992) · Zbl 0969.34001
[31] Fridman, E.; Shaked, U.: A descriptor system approach to H$\infty $ control of linear time-delay systems, IEEE trans automat control 47, No. 2, 253-270 (2002) · Zbl 1006.93021
[32] Gao, H.; Wang, C.: Comments and further results on A descriptor system approach to H$\infty $ control of linear time-delay systems, IEEE trans automat control 48, 520-525 (2003)
[33] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE trans automat control 44, 876-877 (1999) · Zbl 0957.34069 · doi:10.1109/9.754838
[34] He, Y.; Wang, Q. G.; Lin, C.; Wu, M.: Delay-range-dependent stability for systems with time-varying delay, Automatica 43, 371-376 (2007) · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[35] Moon, Y. S.; Park, P. G.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, Int J control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[36] Gao, H. J.; Lam, J.; Wang, Z. D.: Discrete bilinear stochastic systems with time-varying delay: stability analysis and control synthesis, Chaos, solitons & fractals 34, No. 2, 394-404 (2007) · Zbl 1134.93413 · doi:10.1016/j.chaos.2006.03.027
[37] Karimi, H. R.: Observer-based mixed H2/H$\infty $ control design for linear systems with time-varying delays: an LMI approach, Int J control automat syst 6, No. 1, 1-14 (2008)
[38] Lee, Y. S.; Moon, Y. S.; Kwon, W. H.; Park, P. G.: Delay-dependent robust H$\infty $ control for uncertain systems with a state-delay, Automatica 40, 65-72 (2004) · Zbl 1046.93015 · doi:10.1016/j.automatica.2003.07.004