zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New stability and stabilization for switched neutral control systems. (English) Zbl 1198.93187
Summary: This paper concerns stability and stabilization issues for switched neutral systems and presents new classes of piecewise Lyapunov functionals and multiple Lyapunov functionals, based on which, two new switching rules are introduced to stabilize the neutral systems. One switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. The other is based on the determination of average dwell time computed from a new class of linear matrix inequalities (LMIs). And then, state-feedback control is derived for the switched neutral control system mainly based on the state switching rules. Finally, three examples are given to demonstrate the effectiveness of the proposed method. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
93D15Stabilization of systems by feedback
34K20Stability theory of functional-differential equations
34K40Neutral functional-differential equations
93C23Systems governed by functional-differential equations
93C30Control systems governed by other functional relations
WorldCat.org
Full Text: DOI
References:
[1] Engell, S.; Kowalewski, S.; Schulz, C.; Strusberg, O.: Continuous-discrete interactions in chemical processing plants, Proc IEEE 88, No. 7, 1050-1068 (2000)
[2] Horowitz, R.; Varaiya, P.: Control design of an automated highway system, Proc IEEE 88, 913-925 (2000)
[3] Livadas, C.; Lygeros, J.; Lynch, N. A.: High-level modeling and analysis of the traffic alert and collision avoidance system, Proc IEEE 88, No. 7, 926-948 (2000)
[4] Varaiya, P.: Smart cars on smart roads: problems of control, IEEE trans automat contr 38, No. 2, 195-207 (1993)
[5] Pepyne, D.; Cassandaras, C.: Optimal control of hybrid systems in manufacturing, Proc IEEE 88, No. 7, 1008-1122 (2000)
[6] Song, M.; Tran, T.; Xi, N.: Integration of task scheduling, action planning, and control in robotic manufacturing systems, Proc IEEE 88, No. 7, 1097-1107 (2000)
[7] Antsaklis, P.: Special issue on hybrid systems: theory and applications-A brief introduction to the theory and applications of hybrid systems, Proc IEEE 88, No. 7, 887-897 (2000)
[8] Liberzon, D.; Morse, A. -S.: Basic problems in stability and design of switched systems, IEEE contr syst mag 19, No. 5, 59-70 (1999)
[9] Decarlo, R.; Branicky, M. -S.; Pettersson, S.; Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems, Proc IEEE 88, No. 7, 1069-1082 (2000)
[10] Sun, Z.; Ge, S. -S.: Analysis and synthesis of switched linear control systems, Automatica 41, No. 2, 181-195 (2005) · Zbl 1074.93025 · doi:10.1016/j.automatica.2004.09.015
[11] Guan, Z. -H.; Zhang, H.: Stabilization of complex network with hybrid impulsive and switching control, Chaos soliton fract 37, No. 5, 1372-1382 (2008) · Zbl 1142.93423 · doi:10.1016/j.chaos.2006.10.064
[12] Cervantes, I.; Femat, R.; Ramos, J. -L.: Study of a class of hybrid-time systems, Chaos soliton fract 32, No. 3, 1081-1095 (2007) · Zbl 1133.34304 · doi:10.1016/j.chaos.2005.11.105
[13] Liu, X. -Z.; Teo, K. -L.; Zhang, H. -T.; Chen, G. -R.: Switching control of linear systems for generating chaos, Chaos soliton fract 30, No. 3, 725-733 (2006) · Zbl 1143.93322 · doi:10.1016/j.chaos.2005.03.020
[14] Zhai, G. -S.; Xu, X. -P.; Lin, H.; Michel, A. -N.: Analysis and design of switched normal systems, Nonlinear anal theo methods appl 65, No. 12, 2248-2259 (2006) · Zbl 1119.34042 · doi:10.1016/j.na.2006.01.034
[15] Chen, W. -H.; Zheng, W. -X.: Delay-dependent robust stabilization for uncertain neutral systems with distributed delays, Automatica 43, No. 1, 95-104 (2007) · Zbl 1140.93466 · doi:10.1016/j.automatica.2006.07.019
[16] Han, Q. -L.: A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays, Automatica 40, No. 10, 1791-1796 (2004) · Zbl 1075.93032 · doi:10.1016/j.automatica.2004.05.002
[17] Park, J. -H.: Stability criterion for neutral differential systems with mixed multiple time-varying delay arguments, Math comput simulat 59, No. 5, 401-412 (2002) · Zbl 1006.34072 · doi:10.1016/S0378-4754(01)00420-7
[18] Li, H.; Li, H. -B.; Zhong, S. -M.: Some new simple stability criteria of linear neutral systems with a single delay, J comput appl math 200, No. 1, 441-447 (2007) · Zbl 1112.34058 · doi:10.1016/j.cam.2006.01.016
[19] Xiong, L. -L.; Zhong, S. -M.; Tian, J. -K.: Novel robust stability criteria of uncertain neutral systems with discrete and distributed delays, Chaos soliton fract 40, 771-777 (2009) · Zbl 1197.93132 · doi:10.1016/j.chaos.2007.08.023
[20] Tian, J. -K.; Xiong, L. -L.; Liu, J. -X.; Xie, X. -J.: Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay, Chaos soliton fract 40, 1858-1866 (2009) · Zbl 1198.34165 · doi:10.1016/j.chaos.2007.09.068
[21] Yu, K. -W.; Lien, C. -H.: Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos soliton fract 38, No. 3, 650-657 (2008) · Zbl 1146.93366 · doi:10.1016/j.chaos.2007.01.002
[22] Cao, J. -W.; Zhong, S. -M.; Hu, Y. -Y.: Global stability analysis for a class of neural networks with varying delays and control input, Appl math comput 189, No. 2, 1480-1490 (2007) · Zbl 1128.34046 · doi:10.1016/j.amc.2006.12.048
[23] Xu, S. -Y.; Shi, P.; Chu, Y. -M.; Zou, Y.: Robust stochastic stabilization and H$\infty $ control of uncertain neutral stochastic time-delay systems, J math anal appl 314, No. 1, 1-16 (2006) · Zbl 1127.93053 · doi:10.1016/j.jmaa.2005.03.088
[24] Chen, J. -D.: Robust output observer-based control of neutral uncertain systems with discrete and distributed time delays: LMI optimization approach, Chaos soliton fract 34, No. 4, 1254-1264 (2007) · Zbl 1142.93421 · doi:10.1016/j.chaos.2006.03.123
[25] Park, J. -H.; Kwon, O.: Controlling uncertain neutral dynamic systems with delay in control input, Chaos soliton fract 26, No. 3, 805-812 (2005) · Zbl 1091.34045 · doi:10.1016/j.chaos.2005.03.001
[26] Lien, C. -H.: Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input, Chaos soliton fract 31, No. 4, 889-899 (2007) · Zbl 1143.93338 · doi:10.1016/j.chaos.2005.10.080
[27] Bonnet, C.; Partington, J. -R.: Stabilization of some fractional delay systems of neutral type, Automatica 43, No. 12, 2047-2053 (2007) · Zbl 1138.93049 · doi:10.1016/j.automatica.2007.03.017
[28] Park, J. -H.; Kwon, O.: On robust stabilization for neutral delay-differential systems with parametric uncertainties and its application, Appl math comput 162, No. 3, 1167-1182 (2005) · Zbl 1073.93051 · doi:10.1016/j.amc.2004.02.003
[29] Chen, W. -H.; Guan, Z. -H.; Lu, X. -M.: Robust H$\infty $ control of neutral delay system s with Markovian jumping parameters, Contr theor appl 20, No. 5, 776-778 (2005) · Zbl 1098.93504
[30] Sen, M. -D.; Malaina, J. -L.; Gallego, A.; Soto, J. -C.: Stability of non-neutral and neutral dynamic switched systems subject to internal delays, Am J appl sci 2, No. 10, 1481-1490 (2005)
[31] Sun, X. -M.; Fu, J.; Sun, H. -F.; Zhao, J.: Stability of linear switched neutral delay systems, Proc the chinese soc electrical eng 25, No. 23, 42-46 (2005)
[32] Zhang, Y.; Liu, X.; Zhu, H.: Stability analysis and control synthesis for a class of switched neutral systems, Appl math comput 190, No. 2, 1258-1266 (2007) · Zbl 1117.93062 · doi:10.1016/j.amc.2007.02.011
[33] Liu, D. -Y.; Liu, X. -Z.; Zhong, S. -M.: Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays, Appl math comput 202, No. 2, 828-839 (2008) · Zbl 1143.93020 · doi:10.1016/j.amc.2008.03.028
[34] Geromel, J. C.; Colaneri, P.: Stability and stabilization of continuous-time switched linear systems, SIAM J control optim 45, No. 5, 1915-1930 (2006) · Zbl 1130.34030 · doi:10.1137/050646366
[35] Sun, X. -M.; Zhao, J.; Hill, D. J.: Stability and L2-gain analysis for switched delay systems: a delay-dependent method, Automatica 42, No. 10, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[36] Liberzon, D.: Switching in systems and control, (2003) · Zbl 1036.93001
[37] Gu, K. -Q.: A further refinement of discretized Lyapunov functional method for the stability of time-delay systems, Int J control 74, No. 10, 967-976 (2001) · Zbl 1015.93053 · doi:10.1080/00207170110047190
[38] Rockafellar, R.: Convex analysis, (1970) · Zbl 0193.18401
[39] Garg, K. -M.: Theory of differentiation: a unified theory of differentiation via new derivate theorems and new derivatives, (1998) · Zbl 0918.26003
[40] Lasdon, L. -S.: Optimization theory for large scale systems, Series of operation research (1970) · Zbl 0224.90038