zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stable adaptive synchronization scheme for uncertain chaotic systems via observer. (English) Zbl 1198.93196
Summary: A novel observer-based adaptive synchronization scheme is presented which is used in a chaos communication system. Also, a new nonlinear stochastic adaptive sliding mode observer is extended to reconstruct the states of the stochastic chaotic transmitter at the receiver. The observer is able to overcome the effect of model and parameters uncertainties as well as transmitter, channel and measurement noises. Moreover, a theorem is presented to prove the stability in probability of the proposed observer using stochastic Lyapunov stability criterion. The time-varying adaptation gains of the observer resulted from the proposed theorem ensure fast convergence of the estimated states. Adaptation gains are bounded and do not have any singularity problem especially when the mean value of the observer states’ error. In this paper, the parameters of the transmitter are unknown or are changed intermittently to increase the security of the message transmission. Performance of the message reconstruction in the receiver is enhanced using the scalar transmitted signal to estimate the parameters of the transmitter. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

93D21Adaptive or robust stabilization
Full Text: DOI
[1] Pecora, L.; Carroll, T.: Synchronization in chaotic systems, Phys rev lett 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[2] Kolumban, G.; Kennedy, M. P.; Chua, L. O.: The role of synchronization in digital communications using chaos -- part I: Fundamentals of digital communications, IEEE trans circuits syst -- I: Fundam theory appl 44, No. 10, 927-936 (1997)
[3] Kolumban, G.; Kennedy, M. P.; Chua, L. O.: The role of synchronization in digital communications using chaos -- part II: Chaotic modulation and chaotic synchronization, IEEE trans circuits syst -- I: Fundam theory appl 45, No. 11, 1129-1140 (1998) · Zbl 0991.93097 · doi:10.1109/81.735435
[4] Kolumban, G.; Kennedy, M. P.: The role of synchronization in digital communications using chaos -- part III: Performance bounds for correlation receivers, IEEE trans circuits syst -- I: Fundam theory appl 47, No. 12, 1673-1683 (2000) · Zbl 0990.94002 · doi:10.1109/81.899919
[5] Abel, A.; Schwarz, W.: Chaos communications-principles, schemes, and system analysis, Proc IEEE 90, No. 5, 691-710 (2002)
[6] Hasler, M.; Schimming, Th: Optimal and suboptimal chaos receivers, Proc IEEE 90, No. 5, 733-746 (2002)
[7] Sh, Ch Tsay; Ch, K. Huang; Qiu, D. L.; Chen, W. T.: Implementation of bidirectional chaotic communication systems based on Lorenz circuits, Chaos, solitons & fractals 20, 567-579 (2004) · Zbl 1050.93035 · doi:10.1016/S0960-0779(03)00415-6
[8] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S.: The synchronization of chaotic systems, Phys rep 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[9] Cherrier E, Boutayeb M, Ragot J. Observers based synchronization and Input recovery for a class of nonlinear chaotic models. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: 2005. p. 7031 -- 7035.
[10] Morgul, O.; Solak, E.; Akgul, M.: Observer based chaotic message transmission, Int J bifurc chaos 13, No. 4, 1003-1017 (2003) · Zbl 1064.94530 · doi:10.1142/S0218127403007072
[11] Fisher, J. R.: C.t.leondesoptimal nonlinear filtering in advances in control theory, Optimal nonlinear filtering in advances in control theory 5, 197-200 (1967)
[12] Schweppe, F. C.: Uncertain dynamic systems, (1973)
[13] Behzad, M.; Salarieh, H.; Alasty, A.: Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control, Chaos, solitons & fractals 36, 1295-1304 (2008) · Zbl 1148.37022 · doi:10.1016/j.chaos.2006.07.058
[14] Peng HP, Li LX, Yang YX, Zhang XH. Parameter estimation of time-delay chaotic system. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2007.09.025.
[15] Lian, K. Y.; Liu, P.; Chiang, T. Sh; Ch, S. Chiu: Adaptive synchronization design for chaotic systems via a scalar driving signal, IEEE trans circuits syst -- I: Fundam theory appl 49, No. 1, 17-27 (2002)
[16] Feki, M.: An adaptive chaos synchronization scheme applied to secure communication, Chaos, solitons & fractals 18, 141-148 (2003) · Zbl 1048.93508 · doi:10.1016/S0960-0779(02)00585-4
[17] Azemi, A.; Yaz, E. E.: Sliding-mode adaptive observer approach to chaotic synchronization, Trans ASME 122, 758-765 (2000)
[18] Raoufi R, Khaloozadeh H. A modified robust adaptive chaos synchronization. In: Int. Conf. on signal processing & communication. Bangalore, India: 2004. p. 76 -- 80.
[19] Martinez-Guerra, R.; Yu, W.: Chaotic synchronization and secure communication via sliding-mode observer, Int J bifurc chaos 18, No. 1, 235-243 (2008) · Zbl 1146.93317 · doi:10.1142/S0218127408020264
[20] Zhu, Zh; Leung, H.: Adaptive identification of nonlinear systems with application to chaotic communications, IEEE trans circuits syst -- I: Fundam theory appl 47, No. 7, 1072-1080 (2000) · Zbl 0992.93017 · doi:10.1109/81.855462
[21] Han, M.; Xi, J.; Xu, Sh: Chaotic system identification based on Kalman filter, IEEE int joint conf neural netw, 675-680 (2002)
[22] Isidori, A.: Nonlinear control systems, (1995) · Zbl 0878.93001
[23] Noh, D.; Jo, N. H.; Seo, J. H.: Nonlinear observer design by dynamic observer error linearization, IEEE trans autom control 49, No. 10, 1746-1750 (2004)
[24] Ch, L. Hwang; Chen, Y. M.; Jan, Ch: Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control, IEEE trans control syst technol 13, No. 1, 56-66 (2005)
[25] Li, D.; Wang, Z.; Zhuo, J.; Fang, J.; Ni, J.: A note on chaotic synchronization of time delayed secure communication systems, Chaos, solitons & fractals 38, 1217-1224 (2008) · Zbl 1152.93449 · doi:10.1016/j.chaos.2007.01.057
[26] Fan, X.; Arcak, M.: Observer design for systems with multi-variable monotone nonlinearities, Syst control lett 50, 319-330 (2003) · Zbl 1157.93330 · doi:10.1016/S0167-6911(03)00170-1
[27] Oksendal, B.: Stochastic differential equations an introduction with applications, (1998)
[28] Chen, C. C.; Yao, K.: Stochastic-calculus-based numerical evaluation and performance analysis of chaotic communication systems, IEEE trans circuits syst -- I: Fundam theory appl 47, No. 12, 1663-1672 (2000) · Zbl 1011.94501 · doi:10.1109/81.899918
[29] Liu, Y. G.; Zhang, J. F.: Reduced-order observer-based control design for nonlinear stochastic systems, Syst control lett 52, 123-135 (2004) · Zbl 1157.93538 · doi:10.1016/j.sysconle.2003.11.006
[30] Niu, Y.; Daniel, W. C. Ho: Robust observer design for itô stochastic time-delay systems via sliding mode control, Syst control lett 55, 781-793 (2006) · Zbl 1100.93047 · doi:10.1016/j.sysconle.2006.03.007
[31] Walcott, B. L.; Zak, S. H.: State observation of uncertain nonlinear dynamical systems, IEEE trans automat control 32, 166-170 (1987) · Zbl 0618.93019 · doi:10.1109/TAC.1987.1104530
[32] Kushner, H. J.: Stochastic stability and control, (1967) · Zbl 0244.93065
[33] Van Handel, R.: Almost global stochastic stability, SIAM J control optimizat 45, No. 4, 1297-1313 (2006) · Zbl 1124.34033 · doi:10.1137/040618850
[34] Dedieu, H.; Ogorzałlek, M. J.: Identifiability and identification of chaotic systems based on adaptive synchronization, IEEE trans circuits syst -- I: Fundam theory appl 44, 10 948-962 (1997)
[35] Huijberts, H.; Nijmeijer, H.; Willems, R.: System identification in communication with chaotic systems, IEEE trans circuits syst -- I: Fundam theory appl 47, 6 800-808 (2000) · Zbl 0972.93017 · doi:10.1109/81.852932
[36] Roy, D.; Musielak, Z. E.: Generalized Lorenz models and their routes to chaos. I. energy-conserving vertical mode truncations, Chaos, solitons & fractals 32, 1038-1052 (2007) · Zbl 1127.37054
[37] Li, D.; Lu, J.; Wu, X.; Chen, G.: Estimating bounds for the Lorenz family of chaotic systems, Chaos, solitons & fractals 23, 529-534 (2005) · Zbl 1061.93506 · doi:10.1016/j.chaos.2004.05.021