zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symplectic synchronization of different chaotic systems. (English) Zbl 1198.93200
Summary: A new symplectic synchronization of chaotic systems is studied. Traditional generalized synchronizations are special cases of the symplectic synchronization. A sufficient condition is given for the asymptotical stability of the null solution of an error dynamics. The symplectic synchronization may be applied to the design of secure communication. Finally, numerical results are studied for a Quantum-CNN oscillators synchronized with a Rössler system in three different cases. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

93D99Stability of control systems
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Ge, Z. -M.; Yang, C. -H.: The generalized synchronization of a quantum-CNN chaotic oscillator with different order systems, Chaos, solitons & fractals 35, 980-990 (2008) · Zbl 1141.37017 · doi:10.1016/j.chaos.2006.05.090
[2] Ge, Z. -M.; Yang, C. -H.: Synchronization of complex chaotic systems in series expansion form, Chaos, solitons & fractals 34, 1649-1658 (2007) · Zbl 1152.37314 · doi:10.1016/j.chaos.2006.04.072
[3] Pecora, L. -M.; Carroll, T. -L.: Synchronization in chaotic system, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[4] Ge, Zheng-Ming; Leu, Wei-Ying: Anti-control of chaos of two-degrees-of-freedom louderspeaker system and chaos synchronization of different order systems, Chaos, solitons & fractals 20, 503-521 (2004) · Zbl 1048.37077 · doi:10.1016/j.chaos.2003.07.001
[5] Femat, R.; Ramirez, J. -A.; Anaya, G. -F.: Adaptive synchronization of high-order chaotic systems: a feedback with low-order parameterization, Physica D 139, 231-246 (2000) · Zbl 0954.34037 · doi:10.1016/S0167-2789(99)00226-2
[6] Ge, Z. -M.; Chang, C. -M.: Chaos synchronization and parameters identification of single time scale brushless DC motors, Chaos, solitons & fractals 20, 883-903 (2004) · Zbl 1071.34048 · doi:10.1016/j.chaos.2003.10.005
[7] Femat, R.; Perales, G. -S.: On the chaos synchronization phenomenon, Phys lett A 262, 50-60 (1999) · Zbl 0936.37010 · doi:10.1016/S0375-9601(99)00667-2
[8] Ge, Z. -M.; Yang, C. -H.: Pragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive control, Physica D: Nonlinear phenomena 231, 87-94 (2007) · Zbl 1167.34357 · doi:10.1016/j.physd.2007.03.019
[9] Yang, S. -S.; Duan, C. -K.: Generalized synchronization in chaotic systems, Chaos, solitons & fractals 9, 1703-1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[10] Krawiecki, A.; Sukiennicki, A.: Generalizations of the concept of marginal synchronization of chaos, Chaos, solitons & fractals 11, No. 9, 1445-1458 (2000) · Zbl 0982.37022 · doi:10.1016/S0960-0779(99)00062-4
[11] Ge, Z. -M.; Yang, C. -H.; Chen, H. -H.; Lee, S. -C.: Non-linear dynamics and chaos control of a physical pendulum with vibrating and rotation support, J sound vib 242, No. 2, 247-264 (2001)
[12] Chen, M. -Y.; Han, Z. -Z.; Shang, Y.: General synchronization of Genesio -- Tesi system, Int J bifurcat chaos 14, No. 1, 347-354 (2004) · Zbl 1085.93023 · doi:10.1142/S0218127404009077
[13] Fortuna, Luigi; Porto, Domenico: Quantum-CNN to generate nanoscale chaotic oscillator, Int J bifurcat chaos 14, No. 3, 1085-1089 (2004) · Zbl 1086.37503 · doi:10.1142/S0218127404009624
[14] Ge, Zheng-Ming; Chen, Yen-Sheng: Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, solitons & fractals 21, 101-111 (2004) · Zbl 1048.37027 · doi:10.1016/j.chaos.2003.10.004
[15] Chen, S.; Lu, J.: Synchronization of uncertain unified chaotic system via adaptive control, Chaos, solitons & fractals 14, No. 4, 643-647 (2002) · Zbl 1005.93020 · doi:10.1016/S0960-0779(02)00006-1
[16] Ge, Zheng-Ming; Chen, Chien-Cheng: Phase synchronization of coupled chaotic multiple time scales systems, Chaos, solitons & fractals 20, 639-647 (2004) · Zbl 1069.34056 · doi:10.1016/j.chaos.2003.08.001