zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization of the fractional-order Chen’s system. (English) Zbl 1198.93206
Summary: Based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora-Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition. Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
93D99Stability of control systems
34H10Chaos control (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Gao, X.; Yu, J.: Chaos in the fractional order periodically forced complex Duffing’s oscillators, Chaos, solitons & fractals 26, 1125-1133 (2005)
[2] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos on a fractional Chua’s system, IEEE trans circ syst theory appl 42, 485-490 (1995)
[3] Ivo, Petras: A note on the fractional-order Chua’s system, Chaos, solitons & fractals 38, 140-147 (2008)
[4] Li, C. P.; Peng, G. J.: Chaos in Chen’s system with a fractional order, Chaos, solitons & fractals 20, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[5] Li, C.; Chen, G.: Chaos in the fractional order Chen system and its control, Chaos, solitons & fractals 22, 549-554 (2004) · Zbl 1069.37025
[6] Deng, W. H.; Li, C. P.: Chaos synchronization of the fractional Lü system, Physica A 353, 61-72 (2005)
[7] Petras I. A note on the fractional-order cellular neural networks. In: Proceedings of the IEEE world congress on computational intelligence, International joint conference on neural networks, Vancouver, Canada, 2006, p.16 -- 21.
[8] Shangbo, Zhou; Hua, Li.; Zhengzhou, Zhu: Chaos control and synchronization in a fractional neuron network system, Chaos, solitons & fractals 36, 973-984 (2008) · Zbl 1139.93320 · doi:10.1016/j.chaos.2006.07.033
[9] Tavazoei, M. S.: Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear anal 69, 1299-1320 (2008) · Zbl 1148.65094 · doi:10.1016/j.na.2007.06.030
[10] Matignon D. Stability results for fractional differential equations with applications to control processing, In: Computational engineering in systems and application multi-conference, vol. 2, IMACS, IEEE-SMC Proceedings, Lille, France, July 1996, p. 963 -- 8.
[11] Tavazoei, M. S.: A necessary condition for double-scroll attractor existence in fractional-order system, Phys lett A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[12] Tavazoei, M. S.: Chaotic attractors in incommensurate fractional order system, Physics D 237, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[13] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[14] Sira-Ramirez, H.; Cruz-Hernandez, C.: Synchronization of chaotic systems: a generalized Hamiltonian systems approach, Int J bifurcation chaos 11, 1381-1395 (2001) · Zbl 1206.37053 · doi:10.1142/S0218127401002778
[15] Petras, I.: Control of fractional-order Chua’s system, J electron eng 53, 219-222 (2002)
[16] Lu, J. G.: Chaotic dynamics and synchronization of fractional-order Chua’s circuits with a piecewise-linear nonlinearity, Int J modern phys B 19, 3249-3259 (2005) · Zbl 1124.37309 · doi:10.1142/S0217979205032115
[17] Li, C. P.; Deng, W. H.; Xu, D.: Chaos synchronization of the Chua system with a fractional order, Physica A 360, 171-185 (2006)
[18] Wang, Junwei; Xiong, Xiaohua; Zhang, Yanbin: Extending synchronization scheme to chaotic fractional-order Chen systems, Physica A 370, 279-285 (2006)
[19] Li, Changpin; Yan, Jianping: The synchronization of three fractional differential systems, Chaos, solitons & fractals 32, 751-757 (2007) · Zbl 1132.37308
[20] Butzer, P. L.; Westphal, U.: An introduction to fractional calculus, (2000) · Zbl 0987.26005
[21] Kenneth, S. M.; Bertram, R.: An introduction to the fractional calculus and fractional differential equations, (1993) · Zbl 0789.26002
[22] Hao, Zhu; Shangbo, Zhou: Chaos and synchronization of the fractional-order Chua’s system, Chaos, solitons & fractals 39, 1595-1603 (2009) · Zbl 1197.94233 · doi:10.1016/j.chaos.2007.06.082
[23] Deng, W.; Li, C.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dyn 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[24] Chen, G.; Ueta, T.: Yet another attractor, Internat J bifurc chaos 9, 1465-1466 (1999) · Zbl 0962.37013