Handlovičová, Angela; Mikula, Karol Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation. (English) Zbl 1199.35197 Appl. Math., Praha 53, No. 2, 105-129 (2008). Summary: We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of L. C. Evans and J. Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way. Cited in 3 Documents MSC: 35K93 Quasilinear parabolic equations with mean curvature operator 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs Keywords:mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method PDF BibTeX XML Cite \textit{A. Handlovičová} and \textit{K. Mikula}, Appl. Math., Praha 53, No. 2, 105--129 (2008; Zbl 1199.35197) Full Text: DOI EuDML Link OpenURL References: [1] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993), 200–257. · Zbl 0788.68153 [2] S. Angenent, M. E. Gurtin: Multiphase thermomechanics with an interfacial structure. 2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108 (1989), 323–391. · Zbl 0723.73017 [3] G. Barles, P. E. Souganidis: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), 271–283. · Zbl 0729.65077 [4] M. Beneš, K. Mikula: Simulations of anisotropic motion by mean curvature–comparison of phase field and sharp interface approaches. Acta Math. Univ. Comen. 67 (1998), 17–42. [5] S. L. Chan, E. O. Purisima: A new tetrahedral tesselation scheme for isosurface generation. Computers and Graphics 22 (1998), 83–90. [6] V. Caselles, R. Kimmel, G. Sapiro: Geodesic active contours. International Journal of Computer Vision 22 (1997), 61–79. · Zbl 0894.68131 [7] Y.-G. Chen, Y. Giga, S. Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differ. Geom. 33 (1991), 749–786. · Zbl 0696.35087 [8] S. Corsaro, K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume method in 3D image segmentation. SIAM J. Sci. Comput. 28 (2006), 2248–2265. · Zbl 1126.65088 [9] M. G. Crandall, H. Ishii, P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (NS) 27 (1992), 1–67. · Zbl 0755.35015 [10] K. Deckelnick, G. Dziuk: Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound. 2 (2000), 341–359. · Zbl 0974.65088 [11] K. Deckelnick, G. Dziuk: Numerical approximations of mean curvature flow of graphs and level sets. In: Mathematical Aspects of Evolving Interfaces (L. Ambrosio, K. Deckelnick, G. Dziuk, M. Mimura, V. A. Solonnikov, H. M. Soner, eds.). Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87. · Zbl 1036.65076 [12] G. Dziuk: An algorithm for evolutionary surfaces. Numer. Math. 58 (1991), 603–611. · Zbl 0714.65092 [13] G. Dziuk: Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4 (1994), 589–606. · Zbl 0811.65112 [14] L. C. Evans, J. Spruck: Motion of level sets by mean curvature I. J. Differ. Geom. 33 (1991), 635–681. · Zbl 0726.53029 [15] A. Handlovičová, K. Mikula, A. Sarti: Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Comput. Vis. Sci. 1 (1998), 179–182. · Zbl 0912.68210 [16] A. Handlovičová, K. Mikula, F. Sgallari: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695. · Zbl 1065.65105 [17] A. Handlovičová, K. Mikula, F. Sgallari: Variational numerical methods for solving nonlinear diffusion equations arising in image processing. J. Visual Communication and Image Representation 13 (2002), 217–237. [18] J. Kačur, K. Mikula: Solution of nonlinear diffusion appearing in image smoothing and edge detection. Appl. Numer. Math. 17 (1995), 47–59. · Zbl 0823.65089 [19] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134 (1996), 275–301. · Zbl 0937.53029 [20] R. Le Veque: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. [21] K. Mikula, J. Kačur: Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM J. Sci. Comput. 17 (1996), 1302–1327. · Zbl 0868.35063 [22] K. Mikula, N. Ramarosy: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561–590. · Zbl 1013.65094 [23] K. Mikula, A. Sarti, F. Sgallari: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Vis. Sci. 9 (2006), 23–31. · Zbl 05027719 [24] K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume level set method in medical image segmentation. In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.). Springer, New York, 2005, pp. 583–626. [25] K. Mikula, D. Ševčovič: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001), 1473–1501. · Zbl 0980.35078 [26] K. Mikula, D. Ševčovič: Computational and qualitative aspects of evolution of curves driven by curvature and external force. Computing and Visualization in Science 6 (2004), 211–225. [27] R. H. Nochetto, M. Paolini, C. Verdi: Sharp error analysis for curvature dependent evolving fronts. Math. Models Methods Appl. Sci. 3 (1993), 711–723. · Zbl 0802.65124 [28] A. M. Oberman: A convergent monotone difference scheme for motion of level sets by mean curvature. Numer. Math. 99 (2004), 365–379. · Zbl 1070.65082 [29] S. Osher, R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York, 2003. · Zbl 1026.76001 [30] S. Osher, J. Sethian: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988), 12–49. · Zbl 0659.65132 [31] A. Sarti, R. Malladi, J. A. Sethian: Subjective surfaces: A method for completing missing boundaries. Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263. · Zbl 0966.68214 [32] J. A. Sethian: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York, 1999. [33] N. J. Walkington: Algorithms for computing motion by mean curvature. SIAM J. Numer. Anal. 33 (1996), 2215–2238. · Zbl 0863.65061 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.