## The Nehari manifold for a class of concave-convex elliptic systems involving the $$p$$-Laplacian and nonlinear boundary condition.(English)Zbl 1200.35103

Summary: The existence and multiplicity of weak solutions is established for a class of concave-convex elliptic systems of the form:
$\begin{cases} -\Delta_pu+m(x)|u|^{p-2}u=\lambda a(x)|u|^{\gamma-2}u, &x\in\Omega,\\ -\Delta_pv+m(x)|v|^{p-2}u=\mu b(x)|v|^{\gamma-2}v, &x\in\Omega,\\ |\nabla u|^{p-2} \frac{\partial u}{\partial n}= \frac{\alpha}{\alpha+\beta} |u|^{\alpha-2} u|v|^\beta, &x\in\partial\Omega,\\ |\nabla v|^{p-2} \frac{\partial v}{\partial n}= \frac{\beta}{\alpha+\beta} |u|^\alpha |v|^{\beta-2}v, &x\in\partial\Omega.\end{cases}$
Here $$\Delta_p$$ denotes the $$p$$-Laplacian operator defined by $$\Delta_pz= \text{div}(|\nabla z|^{p-2}\nabla z)$$, $$p>2$$, $$\Omega\subset\mathbb R^N$$ is a bounded domain with smooth boundary, $$\alpha>1$$, $$\beta>1$$, $$2<\alpha+\beta<p<\gamma<p^*$$ ($$p^*= \frac{pN}{N-p}$$ if $$N>p$$, $$p^*=\infty$$ if $$N\leq p$$), $$\frac{\partial}{\partial n}$$ is the outer normal derivative, $$(\lambda,\mu)\in\mathbb R^2\setminus\{(0,0)\}$$, the weight $$m(x)$$ is a positive bounded function and $$a(x),b(x)\in C(\Omega)$$ are functions which change sign in $$\Omega$$. Our technical approach is based on the Nehari manifold which is similar to the fibering method of P. Drabek and S. I. Pohozaev [Positive solutions for the $$p$$-Laplacian: application of the fibering method, Proc. R. Soc. Edinb. Sect. A 127, 721–747 (1997)] together with the recent idea from K. J. Brown and T.-F. Wu [J. Math. Anal. Appl. 337, No. 2, 1326–1336 (2008; Zbl 1132.35361)].

### MSC:

 35J57 Boundary value problems for second-order elliptic systems 35J50 Variational methods for elliptic systems 35J66 Nonlinear boundary value problems for nonlinear elliptic equations 35D30 Weak solutions to PDEs 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

Zbl 1132.35361
Full Text:

### References:

 [1] Djellit, A.; Tas, S., On some nonlinear elliptic systems, Nonlinear anal., 59, 695-706, (2004) · Zbl 1114.35063 [2] Bozhkov, Y.; Mitidieri, E., Existence of multiple solutions for quasilinear systems via fibering method, J. differential equations, 190, 239-267, (2003) · Zbl 1021.35034 [3] Afrouzi, G.A.; Rasouli, S.H., A remark on the linearized stability of positive solutions for systems involving the $$p$$-Laplacian, Positivity, 11, 2, 351-356, (2007) · Zbl 1123.35014 [4] Kandilakis, D.A.; Magiropoulos, M.; Zographopoulos, N.B., The first eigenvalue of $$p$$-Laplacian systems with nonlinear boundary conditions, Bound. value probl., 3, 307-321, (2005) · Zbl 1109.35082 [5] Drabek, P.; Stavrakakis, N.M.; Zographopoulos, N.B., Multiple nontrivial solutions for quasilinear elliptic systems, Differential integral equations, 16, 12, 1519-1531, (2003) · Zbl 1073.35025 [6] Bouchekif, M.; Nasri, Y., On a nonhomogeneous elliptic system with changing sign data, Nonlinear anal., 65, 1476-1487, (2006) · Zbl 1109.35036 [7] Clément, Ph.; Fleckinger, J.; Mitidieri, E.; de Thelin, F., Existence of positive solutions for quasilinear elliptic systems, J. differential equations, 166, 2, 455-477, (2000) · Zbl 0964.35049 [8] de Figueiredo, D.G.; Gossez, Jean-Pierre; Ubilla, P., Local superlinearity and sublinearity for the $$p$$-Laplacian, J. funct. anal., 257, 3, 721-752, (2009) · Zbl 1178.35176 [9] Lu, Feng-Yun, The Nehari manifold and application to a semilinear elliptic system, Nonlinear anal., 71, 7-8, 3425-3433, (2009) · Zbl 1173.35450 [10] Brown, K.J.; Wu, T.F., A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function, J. math. anal. appl., 337, 1326-1336, (2008) · Zbl 1132.35361 [11] Binding, P.A.; Drabek, P.; Huang, Y.X., On neuman boundary value problems for some quasilinear equations, Nonlinear anal., 42, 613-629, (2000) [12] Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. funct. anal., 122, 519-543, (1994) · Zbl 0805.35028 [13] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. pure appl. math., 36, 437-477, (1983) · Zbl 0541.35029 [14] Tehrani, H.T., A multiplicity result for the jumping nonlinearity problem, J. differential equations, 118, 1, 272-305, (2003) · Zbl 1163.35386 [15] Tehrani, H.T., On indefinite superlinear elliptic equations, Calc. var., 4, 139-153, (1996) · Zbl 0852.35052 [16] Amman, H.; Lopez-Gomez, J., A priori bounds and multiple solution for superlinear indefinite elliptic problems, J. differential equations, 146, 336-374, (1998) · Zbl 0909.35044 [17] Adimurthi; Pacella, F.; Yadava, L., On the number of positive solutions of some semilinear Dirichlet problems in a ball, Differential integral equations, 10, 6, 1157-1170, (1997) · Zbl 0940.35069 [18] Damascelli, L.; Grossi, M.; Pacella, F., Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. inst. H. Poincaré anal. non linéaire, 16, 631-652, (1999) · Zbl 0935.35049 [19] Ouyang, T.; Shi, J., Exact multiplicity of positive solutions for a class of semilinear problem II, J. differential equations, 158, 94-151, (1999) · Zbl 0947.35067 [20] Tang, M., Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. roy. soc. Edinburgh sect. A, 133, 705-717, (2003) · Zbl 1086.35053 [21] Ambrosetti, A.; Garcia-Azorero, J.; Peral, I., Multiplicity results for some nonlinear elliptic equations, J. funct. anal., 137, 219-242, (1996) · Zbl 0852.35045 [22] de Figueiredo, D.G.; Gossez, J.P.; Ubilla, P., Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. funct. anal., 199, 452-467, (2003) · Zbl 1034.35042 [23] Adriouch, K.; El Hamidi, A., The Nehari manifold for system of nonlinear elliptic equations, Nonlinear anal., 64, 5, 2149-2167, (2006) · Zbl 1194.35132 [24] Afrouzi, G.A.; Rasouli, S.H., A variational approach to a quasilinear elliptic problem involving the $$p$$-Laplacian and nonlinear boundary condition, Nonlinear anal., 71, 2447-2455, (2009) · Zbl 1173.35487 [25] Alves, C.O.; El Hamidi, A., Nehari manifold and existence of positive solutions to a class of quasilinear problems, Nonlinear anal., 60, 611-624, (2005) · Zbl 1161.35378 [26] Brown, K.J., The Nehari manifold for a semilinear elliptic equation involving a sublinear term, Calc. var., 22, 483-494, (2005) · Zbl 1130.35049 [27] Brown, K.J.; Wu, T.F., A fibering map approach to a semilinear elliptic boundary value problem, Electron. J. differential equations, 69, 1-9, (2007) · Zbl 1133.35337 [28] Brown, K.J.; Zhang, Y., The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. differential equations, 193, 481-499, (2003) · Zbl 1074.35032 [29] Drabek, P.; Pohozaev, S.I., Positive solutions for the $$p$$-Laplacian: application of the fibering method, Proc. roy. soc. Edinburgh sect. A, 127, 721-747, (1997) [30] Wu, T.F., The Nehari manifold for a semilinear elliptic system involving sign-changing weight function, Nonlinear anal., 68, 6, 1733-1745, (2008) · Zbl 1151.35342 [31] Wu, T.F., On semilinear elliptic equations involving concave – convex nonlinearities and sign-changing weight function, J. math. anal. appl., 318, 253-270, (2006) · Zbl 1153.35036 [32] Wu, T.F., A semilinear elliptic problem involving nonlinear boundary condition and sign-changing potential, Electron. J. differential equations, 131, 1-15, (2006) · Zbl 1128.35350 [33] Wu, T.F., Multiplicity results for a semilinear elliptic equation involving sign-changing weight function, Rocky mountain J. math., 39, 3, 995-1011, (2009) · Zbl 1179.35129 [34] Wu, T.F., Multiple positive solutions for a class of concave – convex elliptic problems in $$\mathbb{R}^N$$ involving sign-changing weight, J. funct. anal., 258, 1, 99-131, (2010) · Zbl 1182.35119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.