## The Nehari manifold for a class of concave-convex elliptic systems involving the $$p$$-Laplacian and nonlinear boundary condition.(English)Zbl 1200.35103

Summary: The existence and multiplicity of weak solutions is established for a class of concave-convex elliptic systems of the form:
$\begin{cases} -\Delta_pu+m(x)|u|^{p-2}u=\lambda a(x)|u|^{\gamma-2}u, &x\in\Omega,\\ -\Delta_pv+m(x)|v|^{p-2}u=\mu b(x)|v|^{\gamma-2}v, &x\in\Omega,\\ |\nabla u|^{p-2} \frac{\partial u}{\partial n}= \frac{\alpha}{\alpha+\beta} |u|^{\alpha-2} u|v|^\beta, &x\in\partial\Omega,\\ |\nabla v|^{p-2} \frac{\partial v}{\partial n}= \frac{\beta}{\alpha+\beta} |u|^\alpha |v|^{\beta-2}v, &x\in\partial\Omega.\end{cases}$
Here $$\Delta_p$$ denotes the $$p$$-Laplacian operator defined by $$\Delta_pz= \text{div}(|\nabla z|^{p-2}\nabla z)$$, $$p>2$$, $$\Omega\subset\mathbb R^N$$ is a bounded domain with smooth boundary, $$\alpha>1$$, $$\beta>1$$, $$2<\alpha+\beta<p<\gamma<p^*$$ ($$p^*= \frac{pN}{N-p}$$ if $$N>p$$, $$p^*=\infty$$ if $$N\leq p$$), $$\frac{\partial}{\partial n}$$ is the outer normal derivative, $$(\lambda,\mu)\in\mathbb R^2\setminus\{(0,0)\}$$, the weight $$m(x)$$ is a positive bounded function and $$a(x),b(x)\in C(\Omega)$$ are functions which change sign in $$\Omega$$. Our technical approach is based on the Nehari manifold which is similar to the fibering method of P. Drabek and S. I. Pohozaev [Positive solutions for the $$p$$-Laplacian: application of the fibering method, Proc. R. Soc. Edinb. Sect. A 127, 721–747 (1997)] together with the recent idea from K. J. Brown and T.-F. Wu [J. Math. Anal. Appl. 337, No. 2, 1326–1336 (2008; Zbl 1132.35361)].

### MSC:

 35J57 Boundary value problems for second-order elliptic systems 35J50 Variational methods for elliptic systems 35J66 Nonlinear boundary value problems for nonlinear elliptic equations 35D30 Weak solutions to PDEs 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

Zbl 1132.35361
Full Text:

### References:

  Djellit, A.; Tas, S., On some nonlinear elliptic systems, Nonlinear anal., 59, 695-706, (2004) · Zbl 1114.35063  Bozhkov, Y.; Mitidieri, E., Existence of multiple solutions for quasilinear systems via fibering method, J. differential equations, 190, 239-267, (2003) · Zbl 1021.35034  Afrouzi, G.A.; Rasouli, S.H., A remark on the linearized stability of positive solutions for systems involving the $$p$$-Laplacian, Positivity, 11, 2, 351-356, (2007) · Zbl 1123.35014  Kandilakis, D.A.; Magiropoulos, M.; Zographopoulos, N.B., The first eigenvalue of $$p$$-Laplacian systems with nonlinear boundary conditions, Bound. value probl., 3, 307-321, (2005) · Zbl 1109.35082  Drabek, P.; Stavrakakis, N.M.; Zographopoulos, N.B., Multiple nontrivial solutions for quasilinear elliptic systems, Differential integral equations, 16, 12, 1519-1531, (2003) · Zbl 1073.35025  Bouchekif, M.; Nasri, Y., On a nonhomogeneous elliptic system with changing sign data, Nonlinear anal., 65, 1476-1487, (2006) · Zbl 1109.35036  Clément, Ph.; Fleckinger, J.; Mitidieri, E.; de Thelin, F., Existence of positive solutions for quasilinear elliptic systems, J. differential equations, 166, 2, 455-477, (2000) · Zbl 0964.35049  de Figueiredo, D.G.; Gossez, Jean-Pierre; Ubilla, P., Local superlinearity and sublinearity for the $$p$$-Laplacian, J. funct. anal., 257, 3, 721-752, (2009) · Zbl 1178.35176  Lu, Feng-Yun, The Nehari manifold and application to a semilinear elliptic system, Nonlinear anal., 71, 7-8, 3425-3433, (2009) · Zbl 1173.35450  Brown, K.J.; Wu, T.F., A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function, J. math. anal. appl., 337, 1326-1336, (2008) · Zbl 1132.35361  Binding, P.A.; Drabek, P.; Huang, Y.X., On neuman boundary value problems for some quasilinear equations, Nonlinear anal., 42, 613-629, (2000)  Ambrosetti, A.; Brezis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. funct. anal., 122, 519-543, (1994) · Zbl 0805.35028  Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. pure appl. math., 36, 437-477, (1983) · Zbl 0541.35029  Tehrani, H.T., A multiplicity result for the jumping nonlinearity problem, J. differential equations, 118, 1, 272-305, (2003) · Zbl 1163.35386  Tehrani, H.T., On indefinite superlinear elliptic equations, Calc. var., 4, 139-153, (1996) · Zbl 0852.35052  Amman, H.; Lopez-Gomez, J., A priori bounds and multiple solution for superlinear indefinite elliptic problems, J. differential equations, 146, 336-374, (1998) · Zbl 0909.35044  Adimurthi; Pacella, F.; Yadava, L., On the number of positive solutions of some semilinear Dirichlet problems in a ball, Differential integral equations, 10, 6, 1157-1170, (1997) · Zbl 0940.35069  Damascelli, L.; Grossi, M.; Pacella, F., Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. inst. H. Poincaré anal. non linéaire, 16, 631-652, (1999) · Zbl 0935.35049  Ouyang, T.; Shi, J., Exact multiplicity of positive solutions for a class of semilinear problem II, J. differential equations, 158, 94-151, (1999) · Zbl 0947.35067  Tang, M., Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. roy. soc. Edinburgh sect. A, 133, 705-717, (2003) · Zbl 1086.35053  Ambrosetti, A.; Garcia-Azorero, J.; Peral, I., Multiplicity results for some nonlinear elliptic equations, J. funct. anal., 137, 219-242, (1996) · Zbl 0852.35045  de Figueiredo, D.G.; Gossez, J.P.; Ubilla, P., Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. funct. anal., 199, 452-467, (2003) · Zbl 1034.35042  Adriouch, K.; El Hamidi, A., The Nehari manifold for system of nonlinear elliptic equations, Nonlinear anal., 64, 5, 2149-2167, (2006) · Zbl 1194.35132  Afrouzi, G.A.; Rasouli, S.H., A variational approach to a quasilinear elliptic problem involving the $$p$$-Laplacian and nonlinear boundary condition, Nonlinear anal., 71, 2447-2455, (2009) · Zbl 1173.35487  Alves, C.O.; El Hamidi, A., Nehari manifold and existence of positive solutions to a class of quasilinear problems, Nonlinear anal., 60, 611-624, (2005) · Zbl 1161.35378  Brown, K.J., The Nehari manifold for a semilinear elliptic equation involving a sublinear term, Calc. var., 22, 483-494, (2005) · Zbl 1130.35049  Brown, K.J.; Wu, T.F., A fibering map approach to a semilinear elliptic boundary value problem, Electron. J. differential equations, 69, 1-9, (2007) · Zbl 1133.35337  Brown, K.J.; Zhang, Y., The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. differential equations, 193, 481-499, (2003) · Zbl 1074.35032  Drabek, P.; Pohozaev, S.I., Positive solutions for the $$p$$-Laplacian: application of the fibering method, Proc. roy. soc. Edinburgh sect. A, 127, 721-747, (1997)  Wu, T.F., The Nehari manifold for a semilinear elliptic system involving sign-changing weight function, Nonlinear anal., 68, 6, 1733-1745, (2008) · Zbl 1151.35342  Wu, T.F., On semilinear elliptic equations involving concave – convex nonlinearities and sign-changing weight function, J. math. anal. appl., 318, 253-270, (2006) · Zbl 1153.35036  Wu, T.F., A semilinear elliptic problem involving nonlinear boundary condition and sign-changing potential, Electron. J. differential equations, 131, 1-15, (2006) · Zbl 1128.35350  Wu, T.F., Multiplicity results for a semilinear elliptic equation involving sign-changing weight function, Rocky mountain J. math., 39, 3, 995-1011, (2009) · Zbl 1179.35129  Wu, T.F., Multiple positive solutions for a class of concave – convex elliptic problems in $$\mathbb{R}^N$$ involving sign-changing weight, J. funct. anal., 258, 1, 99-131, (2010) · Zbl 1182.35119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.