zbMATH — the first resource for mathematics

Stability of least energy patterns of the shadow system for an activator-inhibitor model. (English) Zbl 1200.35172
Summary: Stability of stationary solutions to the shadow system for the activator-inhibitor system proposed by Gierer and Meinhardt is considered in higher dimensional domains. It is shown that a stationary solution with minimal “energy” is stable in a weak sense if the inhibitor reacts sufficiently fast, while it is unstable whenever the reaction of the inhibitor is slow. Moreover, the loss of stability results in a Hopf bifurcation.

35K57 Reaction-diffusion equations
35B25 Singular perturbations in context of PDEs
35B35 Stability in context of PDEs
92C15 Developmental biology, pattern formation
Full Text: DOI
[1] M.G. Crandall and P.H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal.,67 (1977), 53–72. · Zbl 0385.34020 · doi:10.1007/BF00280827
[2] E.N. Dancer, On stability and Hopf bifurcations for chemotaxis systems. Preprint, 2000. · Zbl 1010.92010
[3] A. Doelman, R.A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations. Indiana Univ. Math. J.,49 (2000). · Zbl 0994.35058
[4] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}\)n. Mathematical Analysis and Applications, Part A; Adv. Math. Suppl. Stud.,7A (1981), 369–402.
[5] A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetik (Berlin),12 (1972), 30–39. · Zbl 0297.92007 · doi:10.1007/BF00289234
[6] M. Grossi, Uniqueness of the least-energy solutions for a semilinear Neumann problem. Proc. Amer. Math. Soc,128 (2000), 1665–1672. · Zbl 0946.35034 · doi:10.1090/S0002-9939-99-05491-X
[7] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math.840, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1981. · Zbl 0456.35001
[8] D. Iron and M.J. Ward, A metastable spike solutions for a nonlocal reaction-diffusion model. SIAM J. Appl. Math.,60 (2000), 778–802. · Zbl 0956.35011 · doi:10.1137/S0036139998338340
[9] M.K. Kwong, Uniqueness of positive solutions of \(\Delta\)u +u p = 0 in \(\mathbb{R}\)n. Arch. Rational Mech. Anal.,105 (1989), 243–266. · Zbl 0676.35032 · doi:10.1007/BF00251502
[10] C.-S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem. Calculus of Variations and Partial Differential Equations (eds. S. Hildebrandt, D. Kinderlehrer and M. Miranda), Lecture Notes in Math.1340, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1988, 160–174.
[11] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations,72 (1988), 1–27. · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[12] C.-S. Lin and I. Takagi, Method of rotating planes applied to a singularly perturbed Neumann problem. Calc. Var. Partial Differential Equations, to appear. · Zbl 1221.35170
[13] W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math.,44 (1991), 819–851. · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[14] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions. Duke Math. J.,70 (1993), 247–281. · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[15] W.-M. Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Indust. Appl. Math.,12 (1995), 327–365. · Zbl 0843.35006 · doi:10.1007/BF03167294
[16] W.-M. Ni, I. Takagi, J. Wei and E. Yanagida, in preparation.
[17] W.-M. Ni, I. Takagi, and E. Yanagida, Stability analysis of point-condensation solutions to a reaction-diffusion system proposed by Gierer and Meinhardt. Preprint.
[18] A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London, Ser. B,237 (1952), 37–72. · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[19] J. Wei, On a nonlocal eigenvalue problem and its applications to point-condensations in reaction-diffusion systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg.,10 (2000), 1485–1496. · Zbl 1090.35538 · doi:10.1142/S0218127400000979
[20] J. Wei, Uniqueness and critical spectrum of boundary spike solutions. Proc. Roy. Soc. Edinburgh, Sect. A (Mathematics), to appear. · Zbl 1112.35304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.