×

New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system. (English) Zbl 1200.35260

Summary: An generalized Jacobi elliptic functions expansion method with computerized symbolic computation is used for constructing more new exact Jacobi elliptic functions solutions of the generalized coupled Hirota-Satsuma KdV system. As a result, eight families of new doubly periodic solutions are obtained by using this method, some of these solutions are degenerated to solitary wave solutions and triangular functions solutions in the limit cases when the modulus of the Jacobi elliptic functions \(m \rightarrow 1\) or 0, which shows that the applied method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial differential equations arising in mathematical physics.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C10 Series solutions to PDEs
35-04 Software, source code, etc. for problems pertaining to partial differential equations
35B10 Periodic solutions to PDEs
35C08 Soliton solutions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press New York · Zbl 0762.35001
[2] Hu, X. B.; Ma, W. X., Application of Hirotas bilinear formalism to the Toeplitz latticełsome special soliton-like solutions, Phys. Lett. A, 293, 161-165 (2002)
[3] Fan, E. G., Two new applications of the homogeneous balance method, Phys. Lett. A, 265, 353-358 (2000)
[4] Lu, D. C.; Hong, B. J., Backlund transformation and \(n\)-soliton-like solutions to the combined KdV-Burgers equation with variable coefficients, Int. J. Nonlinear Sci., 1, 2, 3-10 (2006) · Zbl 1394.35113
[5] Matveev, V. A.; Salle, M. A., Darboux Transformations and Solitons (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0744.35045
[6] Fan, E. G., Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277, 212-220 (2000) · Zbl 1167.35331
[7] Zhou, Y. B.; Wang, M. L.; Wang, Y. M., Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A, 308, 31-37 (2003)
[8] Lu, D. C.; Hong, B. J., New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system, Appl. Math. Comput., 199, 2, 572-580 (2008) · Zbl 1138.76023
[9] Huang, W. H.; Liu, Y. L., Jacobi elliptic function solutions of the Ablowitz-Ladik discrete nonlinear Schrodinger system, Chaos Solitons Fract., 40, 786-792 (2009) · Zbl 1197.81121
[10] Zhao, H., A new algebraic procedure to construct exact solutions of nonlinear differential-difference equations, Appl. Math. Comput., 216, 1219-1225 (2010) · Zbl 1194.34122
[11] Hong, B. J., New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation, Appl. Math. Comput., 215, 8, 2908-2913 (2009) · Zbl 1180.35459
[12] Peng, Y. Z., Exact travelling wave solutions for the Zakharov-Kuznetsov equation, Appl. Math. Comput., 199, 397-405 (2008) · Zbl 1138.76026
[13] Fu, Z. T.; Liu, S. S.; Liu, S. D.; Zhao, Q., New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A, 290, 1-2, 72-76 (2001) · Zbl 0977.35094
[14] Wu, J. G.; Zhang, M.; Shi, L. M.; Zhang, W. L., The extended expansion method for Jacobi elliptic function and new exact periodic solutions of Zakharov equations, Acta Phys. Sin., 56, 9, 5054-5060 (2007), (in Chinese) · Zbl 1150.35323
[15] Conte, R.; Musette, M., Link between solitary waves and projective Riccati equations, Phys. A: Math. Gen., 25, 21, 5609-5623 (1992) · Zbl 0782.35065
[16] Chen, H. T.; Yin, H. C., A note on the elliptic equation method, Commun. Nonlinear Sci. Numer. Simul., 13, 547-553 (2008) · Zbl 1131.35069
[17] Wang, Q.; Chen, Y.; Zhang, H. Q., An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation, Phys. Lett. A, 340, 411-426 (2005) · Zbl 1145.35358
[18] Yu, Y. X.; Wang, Q.; Zhang, H. Q., The extention of the Jacobi elliptic function rational expansion method, Commun. Nonlinear Sci. Numer. Simul., 12, 702-713 (2007) · Zbl 1111.35069
[19] Lai, S. Y.; Lv, X. M.; Shuai, M. Y., The Jacobi elliptic function solutions to a generalized Benjamin-Bona-Mahony Equation, Math. Comput. Model., 49, 1-2, 369-378 (2009) · Zbl 1165.35447
[20] Lu, D. C.; Hong, B. J.; Tian, L. X., New explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system, Comput. Math. with Appl., 53, 8, 1181-1190 (2007) · Zbl 1129.35445
[21] Zayed, E. M.E.; Gepreel, Khaled A., Some applications of the G’/G-expansion method to non-linear partial differential equations, Appl. Math. Comput., 212, 1-13 (2009) · Zbl 1166.65386
[22] Hirota, R.; Satsuma, J., Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85, 407-415 (1981)
[23] Tam, H. W., The Hirota-Satsuma coupled KdV equation and a coupled Ito system, Phys. Soc. Japan, 69, 45-50 (2000) · Zbl 0965.35144
[24] Fan, E. G.; Hon, B. Y.C., Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems, Phys. Lett. A, 292, 335-337 (2002) · Zbl 1098.35559
[25] Yan, Z. Y., The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system, Chaos Solitions Fract., 15, 575-583 (2003) · Zbl 1037.35074
[26] Hu, H. C.; Liu, Q. P., New Darboux transformation for Hirota-Satsuma coupled KdV system, Chaos Solitions Fract., 17, 921-928 (2003) · Zbl 1030.37050
[27] Weiss, J., The Sine-Gordon equations: complete and partial integrability, J. Math. Phys., 25, 2226-2232 (1984) · Zbl 0557.35107
[28] Zayed, E. M.E.; Zedan, H. A.; Gepreel, K. A., On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV of equations, Chaos Solitions Fract., 22, 285-303 (2004) · Zbl 1069.35080
[29] Dogan, K., Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation, Appl. Math. Comput., 147, 69-78 (2004) · Zbl 1037.35069
[30] Chen, Y.; Yan, Z. Y.; Li, B.; Zhang, H. Q., New explicit solitary wave solutions and periodic wave solutions for the generalized coupled Hirota-Satsuma KdV system, Commun. Theor. Phys., 38, 261-266 (2002) · Zbl 1267.76015
[31] Wu, L. P.; Pang, C. P., Travelling wave solutions for the generalized coupled Hirota-Satsuma KdV system, Appl. Math. Comput., 175, 101-118 (2006) · Zbl 1088.37041
[32] Feng, Y.; Zhang, H. Q., A new auxiliary function method for solving the generalized coupled Hirota-Satsuma KdV system, Appl. Math. Comput., 200, 283-288 (2008) · Zbl 1143.65081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.