[1] |
T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover, Mineola, NY, USA, 2006. · Zbl 1161.76538
· doi:10.1016/j.jcp.2006.02.024 |

[2] |
T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Dover, Mineola, NY, USA, 2005. · Zbl 1209.34001 |

[3] |
D. Liberzon, Switching in Systems and Control, Systems and Control: Foundations and Applications, Birkhäuser, Boston, Mass, USA, 2003. · Zbl 1036.93001 |

[4] |
B. Sasu, “Robust stability and stability radius for variational control systems,” Abstract and Applied Analysis, vol. 2008, Article ID 381791, 29 pages, 2008. · Zbl 05313178
· doi:10.1155/2008/381791 |

[5] |
J. Wang, X. Xiang, and W. Wei, “Existence of periodic solutions for integrodifferential impulsive periodic system on Banach space,” Abstract and Applied Analysis, vol. 2008, Article ID 939062, 19 pages, 2008. · Zbl 1160.45006
· doi:10.1155/2008/939062
· eudml:55325 |

[6] |
Y. Tang and L. Zhou, “Stability switch and Hopf bifurcation for a diffusive prey-predator system with delay,” Journal of Mathematical Analysis and Applications, vol. 334, no. 2, pp. 1290-1307, 2007. · Zbl 1156.35099
· doi:10.1016/j.jmaa.2007.01.041 |

[7] |
Q. Luo and X. Mao, “Stochastic population dynamics under regime switching,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 69-84, 2007. · Zbl 1113.92052
· doi:10.1016/j.jmaa.2006.12.032 |

[8] |
L. Zhang, S. Liu, and H. Lan, “On stability of switched homogeneous nonlinear systems,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 414-430, 2007. · Zbl 1127.93046
· doi:10.1016/j.jmaa.2006.12.065 |

[9] |
B. Mukhopadhyay and R. Bhattacharyya, “Bifurcation analysis of an ecological food-chain model with switching predator,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 260-271, 2008. · Zbl 1143.92039
· doi:10.1016/j.amc.2007.12.022 |

[10] |
M.-F. Danca, W. K. S. Tang, and G. Chen, “A switching scheme for synthesizing attractors of dissipative chaotic systems,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 650-667, 2008. · Zbl 1147.65104
· doi:10.1016/j.amc.2008.01.003 |

[11] |
F. Gao, S. Zhong, and X. Gao, “Delay-dependent stability of a type of linear switching systems with discrete and distributed time delays,” Applied Mathematics and Computation, vol. 196, no. 1, pp. 24-39, 2008. · Zbl 1144.34050
· doi:10.1016/j.amc.2007.05.053 |

[12] |
Y. Zhang, X. Liu, H. Zhu, and S. Zhong, “Stability analysis and control synthesis for a class of switched neutral systems,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1258-1266, 2007. · Zbl 1117.93062
· doi:10.1016/j.amc.2007.02.011 |

[13] |
S. Kim, S. A. Campbell, and X. Liu, “Delay independent stability of linear switching systems with time delay,” Journal of Mathematical Analysis and Applications, vol. 339, no. 2, pp. 785-801, 2008. · Zbl 1128.93044
· doi:10.1016/j.jmaa.2007.06.075 |

[14] |
D. Liu, X. Liu, and S. Zhong, “Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays,” Applied Mathematics and Computation, vol. 202, no. 2, pp. 828-839, 2008. · Zbl 1143.93020
· doi:10.1016/j.amc.2008.03.028 |

[15] |
Y.-F. Xie, W.-H. Gui, and Z.-H. Jiang, “Delay-dependent stabilization of singular systems with multiple internal and external incommensurate constant point delays,” International Journal of Control, Automation and Systems, vol. 6, no. 4, pp. 515-525, 2008. |

[16] |
W. Zhu, “A sufficient condition for asymptotic stability of discrete-time interval system with delay,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 591261, 7 pages, 2008. · Zbl 1147.39006
· doi:10.1155/2008/591261
· eudml:129291 |

[17] |
M. De la Sen, “Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays,” Applied Mathematics and Computation, vol. 185, no. 1, pp. 508-526, 2007. · Zbl 1108.93062
· doi:10.1016/j.amc.2006.07.048 |

[18] |
Q. Zhang, X. Wei, and J. Xu, “On global exponential stability of discrete-time Hopfield neural networks with variable delays,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID 67675, 9 pages, 2007. · Zbl 1183.39013
· doi:10.1155/2007/67675
· eudml:116980 |

[19] |
A. Bilbao-Guillerna, M. De la Sen, S. Alonso-Quesada, and A. Ibeas, “A stable multimodel scheme control for the regulation of the transient behavior of a tunnel-diode trigger circuit,” ISA Transactions, vol. 46, no. 3, pp. 313-326, 2007.
· doi:10.1016/j.isatra.2007.02.003 |

[20] |
A. Ibeas and M. De la Sen, “Robustly stable adaptive control of a tandem of master-slave robotic manipulators with force reflection by using a multiestimation scheme,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 36, no. 5, pp. 1162-1179, 2006.
· doi:10.1109/TSMCB.2006.874693 |

[21] |
A. Ibeas and M. De la Sen, “A robustly stable multiestimation-based adaptive control scheme for robotic manipulators,” Journal of Dynamic Systems, Measurement and Control, vol. 128, no. 2, pp. 414-421, 2006.
· doi:10.1115/1.2196418 |

[22] |
A. Bilbao-Guillerna, M. De la Sen, A. Ibeas, and S. Alonso-Quesada, “Robustly stable multiestimation scheme for adaptive control and identification with model reduction issues,” Discrete Dynamics in Nature and Society, vol. 2005, no. 1, pp. 31-67, 2005. · Zbl 1102.93027
· doi:10.1155/DDNS.2005.31
· eudml:126826 |

[23] |
M. De la Sen and A. Ibeas, “On the stability properties of linear dynamic time-varying unforced systems involving switches between parameterizations from topologic considerations via graph theory,” Discrete Applied Mathematics, vol. 155, no. 1, pp. 7-25, 2007. · Zbl 1104.93048
· doi:10.1016/j.dam.2006.05.003 |

[24] |
M. De la Sen, “Sufficiency-type stability and stabilization criteria for linear time-invariant systems with constant point delays,” Acta Applicandae Mathematicae, vol. 83, no. 3, pp. 235-256, 2004. · Zbl 1067.34078
· doi:10.1023/B:ACAP.0000039018.13226.ed |

[25] |
V. Ionescu, C. Oara, and M. Weiss, Generalized Riccati Theory and Robust Control. A Popov Function Approach, John Wiley & Sons, Chichester, UK, 1999. · Zbl 0915.34024 |

[26] |
S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, vol. 269 of Lecture Notes in Control and Information Sciences, Springer, London, UK, 2001, Edited by M. Thoma, M. Morari. · Zbl 0997.93001 |

[27] |
C. Hou and S. S. Cheng, “Asymptotic dichotomy in a class of fourth order nonlinear delay differential equations with damping,” Abstract and Applied Analysis, vol. 2009, Article ID 484158, 7 pages, 2009. · Zbl 1173.34350
· doi:10.1155/2009/484158
· eudml:55972 |

[28] |
X.-S. Yang, “A remark on positive topological entropy of N-buffer switched flow networks,” Discrete Dynamics in Nature and Society, vol. 2005, no. 2, pp. 93-99, 2005. · Zbl 1097.37007
· doi:10.1155/DDNS.2005.93
· eudml:126478 |

[29] |
J. D. Meiss, Differential Dynamical Systems, vol. 14 of Mathematical Modeling and Computation, SIAM, Philadelphia, Pa, USA, 2007. · Zbl 1144.34001 |

[30] |
M. De la Sen and A. Ibeas, “On the global asymptotic stability of switched linear time-varying systems with constant point delays,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 231710, 31 pages, 2008. · Zbl 1166.34040
· doi:10.1155/2008/231710
· eudml:130387 |

[31] |
M. De la Sen and A. Ibeas, “Stability results for switched linear systems with constant discrete delays,” Mathematical Problems in Engineering, vol. 2008, Article ID 543145, 28 pages, 2008. · Zbl 1162.93393
· doi:10.1155/2008/543145
· eudml:55488 |