×

Interpolation operators on a triangle with one curved side. (English) Zbl 1200.41002

This paper is about remainder formulae and orders of accuracy of interpolation methods. The interpolation schemes consist of either Lagrange interpolation, Hermite interpolation or even Hermite–Birkhoff interpolation conditions. The interpolation takes place in two dimensions on triangles with one curved side, such as quarter-disks. The approximation estimates are derived via classical Peano kernel methods and numerical examples are included.

MSC:

41A05 Interpolation in approximation theory
41A25 Rate of convergence, degree of approximation
41A80 Remainders in approximation formulas
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barnhill, R.E.: Blending function interpolation: a survey and some new results. In: Collatz, L., et al. (eds.) Numerishe Methoden der Approximationstheorie, vol. 30, pp. 43–89. Birkhauser, Basel (1976) · Zbl 0338.65004
[2] Barnhill, R.E.: Representation and approximation of surfaces. In: Rice, J.R. (ed.) Mathematical Software III, pp. 68–119. Academic Press, New York (1977) · Zbl 0407.68030
[3] Barnhill, R.E., Gregory, J.A.: Polynomial interpolation to boundary data on triangles. Math. Comput. 29(131), 726–735 (1975) · Zbl 0313.65098 · doi:10.1090/S0025-5718-1975-0375735-3
[4] Barnhill, R.E., Gregory, J.A.: Compatible smooth interpolation in triangles. J. Approx. Theory 15, 214–225 (1975) · Zbl 0348.41003 · doi:10.1016/0021-9045(75)90104-5
[5] Barnhill, R.E., Gregory, J.A.: Sard kernels theorems on triangular domains with applications to finite element error bounds. Numer. Math. 25, 215–229 (1976) · Zbl 0304.65076 · doi:10.1007/BF01399411
[6] Barnhill, R.E., Mansfield, L.: Error bounds for smooth interpolation in triangles. J. Approx. Theory 11, 306–318 (1974) · Zbl 0286.41001 · doi:10.1016/0021-9045(74)90002-1
[7] Barnhill, R.E., Birkhoff, G., Gordon, W.J.: Smooth interpolation in triangles. J. Approx. Theory 8, 114–128 (1973) · Zbl 0271.41002 · doi:10.1016/0021-9045(73)90020-8
[8] Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 1212–1240 (1989) · Zbl 0678.65003 · doi:10.1137/0726068
[9] Birkhoff, G.: Interpolation to boundary data in triangles. J. Math. Anal. Appl. 42, 474–484 (1973) · Zbl 0262.41003 · doi:10.1016/0022-247X(73)90154-6
[10] Böhmer, K., Coman, G.: Blending Interpolation Schemes on Triangle with Error Bounds. Lecture Notes in Mathematics, vol. 571, pp. 14–37. Springer, Berlin (1977) · Zbl 0353.41002
[11] Coman, G., Cătinaş, T.: Interpolation operators on a tetrahedron with three curved sides. Calcolo (2010). doi: 10.1007/s10092-009-0016-7
[12] Coman, G., Gânscă, I.: Blending approximation with applications in constructions. Buletinul Ştiinţific al Institutului Politehnic Cluj-Napoca, vol. 24, pp. 35–40 (1981) · Zbl 0571.73070
[13] Coman, G., Gânscă, I.: Some practical application of blending approximation II. Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca (1986)
[14] Coman, G., Gânscă, I., Ţâmbulea, L.: Some new roof-surfaces generated by blending interpolation technique. Stud. Univ. ”Babeş-Bolyai”, Math. 36(1), 119–130 (1991) · Zbl 0879.65006
[15] Cavendish, J.C., Gordon, W.J., Hall, Ch.A.: Ritz-Galerkin approximations in blending function spaces. Numer. Math. 26, 155–178 (1976) · Zbl 0335.65051 · doi:10.1007/BF01395970
[16] Dautray, R., Lions, J.L.: Analyse mathematique et calcul numerique. Methodes integrales et numeriques, vol. 6, pp. 798–834. Masson, Paris (1988). Chap. XII
[17] Gordon, W.J.: Distributive lattices and approximation of multivariate functions. In: I.J. Schoenberg (ed.) Proc. Symp. Approximation with Special Emphasis on Spline Functions, Madison, Wisc., pp. 223–277 (1969) · Zbl 0269.41029
[18] Gordon, W.J., Hall, Ch.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973) · Zbl 0254.65072 · doi:10.1007/BF01436298
[19] Gordon, W.J., Wixom, J.A.: Pseudo-harmonic interpolation on convex domains. SIAM J. Numer. Anal. 11(5), 909–933 (1974) · Zbl 0292.41001 · doi:10.1137/0711072
[20] Gregory, J.A.: A blending function interpolant for triangles. In: Handscomb, D.C. (ed.) Multivariate Approximation, pp. 279–287. Academic Press, London (1978) · Zbl 0458.65004
[21] Marshall, J.A., Mitchell, A.R.: An exact boundary technique for improved accuracy in the finite element method. J. Inst. Math. Appl. 12, 355–362 (1973) · Zbl 0271.65060 · doi:10.1093/imamat/12.3.355
[22] Marshall, J.A., Mitchell, A.R.: Blending interpolants in the finite element method. Int. J. Numer. Methods Eng. 12, 77–83 (1978) · Zbl 0371.65002 · doi:10.1002/nme.1620120108
[23] Nielson, G.M.: The side-vertex method for interpolation in triangles. J. Approx. Theory 25, 318–336 (1979) · Zbl 0401.41005 · doi:10.1016/0021-9045(79)90020-0
[24] Nielson, G.M.: Minimum norm interpolation in triangles. SIAM J. Numer. Anal. 17(1), 44–62 (1980) · Zbl 0431.41005 · doi:10.1137/0717007
[25] Nielson, G.N., Thomas, D.H., Wixom, J.A.: Interpolation in triangles. Bull. Aust. Math. Soc. 20(1), 115–130 (1979) · Zbl 0397.65007 · doi:10.1017/S0004972700009138
[26] Renka, R.J., Cline, A.K.: A triangle-based C 1 interpolation method. Rocky Mt. J. Math. 14, 223–237 (1984) · Zbl 0568.65006 · doi:10.1216/RMJ-1984-14-1-223
[27] Sard, A.: Linear Approximation. AMS, Providence (1963) · Zbl 0115.05403
[28] Schumaker, L.L.: Fitting surfaces to scattered data. In: Lorentz, G.G., Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory II, pp. 203–268. Academic Press, San Diego (1976) · Zbl 0343.41003
[29] Zlamal, M.: Curved elements in the finite element method I. SIAM J. Numer. Anal. 10, 229–240 (1973) · Zbl 0285.65067 · doi:10.1137/0710022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.