×

zbMATH — the first resource for mathematics

Best approximation on probabilistic normed spaces. (English) Zbl 1200.46072
Summary: The main purpose of this paper is to study the best approximation in probabilistic normed spaces. We define the best approximation in these spaces and generalize some definitions such as set of best approximation, proximinal set and approximatively compact set. Then we prove some theorems about them.
Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control.

MSC:
46S50 Functional analysis in probabilistic metric linear spaces
41A50 Best approximation, Chebyshev systems
46B20 Geometry and structure of normed linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alsina, C.; Schweizer, B.; Sklar, A., On the definition of a probabilistic normed space, Aequationes math, 46, 91-98, (1993) · Zbl 0792.46062
[2] Alsina, C.; Schweizer, B.; Sklar, A., Continuity properties of probabilistic normes, J math anal appl, 208, 446-452, (1997) · Zbl 0903.46075
[3] Chang, S.S.; Lee, B.S.; Cho, Y.J.; Chen, Y.Q.; Kang, S.M.; Jung, J.S., Generalized contraction mapping principles and differential equations in probabilistic metric spaces, Proc am math soc, 124, 2367-2376, (1996) · Zbl 0857.47042
[4] Chang, S.S.; Cho, Y.J.; Kang, S.M., Nonlinear operator theory in probabilistic metric spaces, (2001), Nova Science Publishers Inc. New York
[5] El Naschie, M.S., On the uncertainty of Cantorian geometry and the two-slit experiment, Chaos, solitons & fractals, 9, 517-529, (1998) · Zbl 0935.81009
[6] El Naschie, M.S., On the unification heterotic strings theory and \(\operatorname{\&z.epsiv;}^\infty\)-theory, Chaos, solitons & fractals, 11, 397-407, (2000)
[7] El Naschie, M.S., A review of \(\operatorname{\&z.epsiv;}^\infty\)-theory and the mass spectrum of high energy particle physics, Chaos, solitons & fractals, 19, 209-236, (2004) · Zbl 1071.81501
[8] El Naschie, M.S., On a fuzzy kahler-like manifold which is consistent with two-slite experiment, Int J nonlinear sci, numer simulat, 6, 95-98, (2005)
[9] El Naschie, M.S., The idealized quantum two-slite gedanken experiment revisited-criticism and reinterpretation, Chaos, solitons & fractals, 27, 9-13, (2006)
[10] El Naschie, M.S., On two new fuzzy kahler manifolds, kelin modular space and’t Hooft holographic principles, Chaos, solitons & fractals, 29, 876-880, (2006)
[11] El Naschie, M.S., Fuzzy dodecahedron topology and E-infinity spacetimes as a model for quantum physics, Chaos, solitons & fractals, 30, 1025-1033, (2006)
[12] El Naschie, M.S., On gauge invariance, dissipative quantum mechanics and self-adjoint sets, Chaos, solitons & fractals, 32, 271-273, (2007)
[13] El Naschie, M.S., P-adic analysis and the transfinite E8 exceptional Lie symmetry group unification, Chaos, solitons & fractals, 38, 612-614, (2008)
[14] Hicks, T.L., Random normed linear structures, Math Japan, 3, 483-486, (1996) · Zbl 0868.46059
[15] Kainen, P.C., Replacing points by compacta in neural network approximation, J franklin inst, 341, 391-399, (2004) · Zbl 1075.54013
[16] Lafuerza-Guillen B, Rodriguez JL. Boundedness in generalized Serstnev spaces, http://front.math.ucdavis.edu/math.pr/0408207.
[17] Menger, K., Statistical metrics, Proc nat acad sci USA, 28, 535-537, (1942) · Zbl 0063.03886
[18] Mushtari, DKh, On the linearity of isometric mappings of random spaces, Kazan GoS univ ucen zap, 128, 86-90, (1968)
[19] Saadati, R.; Amini, M., D-boundedness and D-compactness in finite dimensional probabilistic normed spaces, Proc Indian acat sci math sci, 115, 483-492, (2005) · Zbl 1096.46048
[20] Siger, I., Best approximation in normed linear spaces by elements of linear subspaces, (1970), Springer-Verlag Berlin, Heidelberg, New York
[21] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), Elsevier North Holland New York · Zbl 0546.60010
[22] Sherstnev, A.N., On the notion of a random normed space, Dokl akad nauk SSSR, 149, 280-283, (1963), [English translation in Soviet Math. Dokl. 1963; 4:388-0] · Zbl 0127.34902
[23] Sherstnev, A.N., Random normed spaces. problems of completeness, Kazan GoS univ ucen zap, 122, 3-20, (1962)
[24] Vaezpour, S.M.; Shams, M., On some probabilistic metric spaces, Int J math anal, 20, 957-964, (2007) · Zbl 1145.54318
[25] Vaezpour SM, Karimi F. t-Best approximation in fuzzy normed spaces. Iranian J Fuzzy Syst, accepted for publication. · Zbl 1171.46051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.