[1] 
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96 67456750. 
[2] 
Amosova, N. N. (1972). Limit theorems for the probabilities of moderate deviations. Vestnik Leningrad. Univ. No. 13 Mat. Meh. Astronom. Vyp. 514, 148. 
[3] 
Barker, L. E., Smith, P. J., Gerzoff, R. B., Luman, E. T., McCauley, M. M. and Strine, T. W. (2005). Ranking states’ immunization coverage: An example from the National Immunization Survey. Stat. Med. 24 605613.
· doi:10.1002/sim.2039 
[4] 
Brijs, T., Van Den Bossche, F., Wets, G. and Karlis, D. (2006). A model for identifying and ranking dangerous accident locations: A case study in Flanders. Statist. Neerlandica 60 457476. · Zbl 1115.62122
· doi:10.1111/j.14679574.2006.00341.x 
[5] 
Brijs, T., Karlis, D., Van Den Bossche, F. and Wets, G. (2007). A Bayesian model for ranking hazardous road sites. J. Roy. Statist. Soc. Ser. A 170 10011017.
· doi:10.1111/j.1467985X.2007.00486.x 
[6] 
Cesário, L. C. and Barreto, M. C. M. (2003). Study of the performance of bootstrap confidence intervals for the mean of a normal distribution using perfectly ranked set sampling. Rev. Mat. Estatíst. 21 720. 
[7] 
Chen, H., Stansy, E. A. and Wolfe, D. A. (2006). An empirical assessment of ranking accuracy in ranked set sampling. Comput. Statist. Data Anal. 51 14111419. · Zbl 1157.62316
· doi:10.1016/j.csda.2006.07.018 
[8] 
Corain, L. and Salmaso, L. (2007). A nonparametric method for defining a global preference ranking of industrial products. J. Appl. Statist. 34 203216. · Zbl 1119.62389
· doi:10.1080/02664760600995122 
[9] 
Goldstein, H. and Spiegelhalter, D. J. (1996). League tables and their limitations: Statistical issues in comparisons of institutional performance. J. Roy. Statist. Soc. Ser. A 159 385443. 
[10] 
Hall, P. and Miller, H. (2009). Using the bootstrap to quantify the authority of an empirical ranking. Ann. Statist. 37 39293959. · Zbl 1191.62080
· doi:10.1214/09AOS699

[11] 
Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 11631174. · Zbl 0323.62033
· doi:10.1214/aos/1176343247

[12] 
Hui, T. P., Modarres, R. and Zheng, G. (2005). Bootstrap confidence interval estimation of mean via ranked set sampling linear regression. J. Stat. Comput. Simul. 75 543553. · Zbl 1067.62012
· doi:10.1080/00949650412331286124 
[13] 
Joe, H. (2000). Inequalities for random utility models, with applications to ranking and subset choice data. Methodol. Comput. Appl. Probab. 2 359372. · Zbl 0984.60027
· doi:10.1023/A:1010058117460 
[14] 
Joe, H. (2001). Multivariate extreme value distributions and coverage of ranking probabilities. J. Math. Psych. 45 180188. · Zbl 0988.62031
· doi:10.1006/jmps.1991.1294 
[15] 
Langford, I. H. and Leyland, A. H. (1996). Discussion of “League tables and their limitations: Statistical issues in comparisons of institutional performance” by Goldstein and Spiegelhalter. J. Roy. Statist. Soc. Ser. A 159 427428. 
[16] 
McHale, I. and Scarf, P. (2005). Ranking football players. Significance 2 5457.
· doi:10.1111/j.17409713.2005.00091.x 
[17] 
Mease, D. (2003). A penalized maximum likelihood approach for the ranking of college football teams independent of victory margins. Amer. Statist. 57 241248.
· doi:10.1198/0003130032396 
[18] 
Mukherjee, S. N., Sykacek, P., Roberts, S. J. and Gurr, S. J. (2003). Gene ranking using bootstrapped p values. Sigkdd Explorations 5 1418. 
[19] 
Murphy, T. B. and Martin, D. (2003). Mixtures of distancebased models for ranking data. Comput. Statist. Data Anal. 41 645655. · Zbl 05361760 
[20] 
Nordberg, L. (2006). On the reliability of performance rankings. In Festschrift for Tarmo Pukkila on His 60th Birthday (E. P. Liski, J. Isotalo, J. Niemelä and G. P. H. Styan, eds.) 205216. Univ. Tampere, Tampere, Finland. · Zbl 1145.62411 
[21] 
OpgenRhein, R. and Strimmer, K. (2007). Accurate ranking of differentially expressed genes by a distributionfree shrinkage approach. Stat. Appl. Genet. Mol. Biol. 6 Art. 9, 20pp. (electronic). · Zbl 1166.62361
· doi:10.2202/15446115.1252
· http://www.bepress.com/sagmb/vol6/iss1/art9 
[22] 
Quevedo, J. R., Bahamonde, A. and Luaces, O. (2007). A simple and efficient method for variable ranking according to their usefulness for learning. Comput. Statist. Data Anal. 52 578595. · Zbl 05560179 
[23] 
Rényi, A. (1953). On the theory of order statistics. Acta Math. Acad. Sci. Hungar. 4 191232. · Zbl 0052.14202
· doi:10.1007/BF02127580 
[24] 
Rubin, H. and Sethuraman, J. (1965). Probabilities of moderate deviations. Sankhyā Ser. A 27 325346. · Zbl 0178.53802 
[25] 
Taconeli, C. A. and Barreto, M. C. M. (2005). Evaluation of a bootstrap confidence interval approach in perfectly ranked set sampling. Rev. Mat. Estatíst. 23 3353. 
[26] 
Xie, M., Singh, K. and Zhang, C. H. (2009). Confidence intervals for population ranks in the presence of ties and near ties. J. Amer. Statist. Assoc. 104 775787. · Zbl 06441096
· doi:10.1198/jasa.2009.0142 