zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Physical applications of second-order linear differential equations that admit polynomial solutions. (English) Zbl 1200.81049
Summary: Conditions for the second-order linear differential equation $$\left(\sum_{i=0}^3 a_{3,i}x^i\right) y''+ \left(\sum_{i=0}^2 a_{2,i}x^i\right) y'- \left(\sum_{i=0}^1 \tau _{1,i}x^i\right) y=0$$ to have polynomial solutions are given. Several applications of these results to Schrödinger’s equation are discussed. Conditions under which the confluent, biconfluent and general Heun equation yields polynomial solutions are explicitly given. Some new classes of exactly solvable differential equations are also discussed. The results of this work are expressed in such a way as to allow direct use, without preliminary analysis.

81Q05Closed and approximate solutions to quantum-mechanical equations
34L40Particular ordinary differential operators
35J10Schrödinger operator
33D50Orthogonal polynomials and functions in several variables
35C11Polynomial solutions of PDE
Full Text: DOI arXiv