zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sparse recovery by non-convex optimization - instance optimality. (English) Zbl 1200.90158
The authors discuss the theoretical properties of a class of compressed sensing decoders that rely on $\ell^P$ minimization with $0<p<1$. For an introduction to the topic one may consult a paper by {\it E. J Candès, J. Romberg} and {\it T. Tao} [Commun. Pure Appl. Math. 59, No. 8, 1207--1223 (2006; Zbl 1098.94009)] that treats the case $p=1$.

90C30Nonlinear programming
Full Text: DOI
[1] Baraniuk, R.; Davenport, M.; Devore, R.; Wakin, M.: A simple proof of the restricted isometry property for random matrices, Constr. approx. 28, No. 3, 253-263 (2008) · Zbl 1177.15015 · doi:10.1007/s00365-007-9003-x
[2] Candès, E. J.; Romberg, J.; Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE trans. Inform. theory 52, 489-509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[3] Candès, E. J.; Romberg, J.; Tao, T.: Stable signal recovery from incomplete and inaccurate measurements, Comm. pure appl. Math. 59, 1207-1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[4] Candès, E. J.; Tao, T.: Decoding by linear programming, IEEE trans. Inform. theory 51, No. 12, 489-509 (2005) · Zbl 1264.94121
[5] Candès, E. J.; Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies?, IEEE trans. Inform. theory 52, No. 12, 5406-5425 (2006) · Zbl 1309.94033
[6] Candès, E. J.: The restricted isometry property and its implications for compressed sensing, C. R. Math. 346, No. 9 -- 10, 589-592 (2008) · Zbl 1153.94002 · doi:10.1016/j.crma.2008.03.014
[7] Chartrand, R.; Staneva, V.: Restricted isometry properties and nonconvex compressive sensing, Inverse problems 24 (2008) · Zbl 1143.94004 · doi:10.1088/0266-5611/24/3/035020
[8] Chartrand, R.: Exact reconstructions of sparse signals via nonconvex minimization, IEEE signal process. Lett. 14, No. 10, 707-710 (2007)
[9] Chen, S.; Donoho, D.; Saunders, M.: Atomic decomposition by basis pursuit, SIAM J. Sci. comput. 20, No. 1, 33-61 (1999) · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[10] Cohen, A.; Dahmen, W.; Devore, R.: Compressed sensing and best k-term approximation, J. amer. Math. soc. 22, No. 1, 211-231 (2009) · Zbl 1206.94008 · doi:10.1090/S0894-0347-08-00610-3
[11] I. Daubechies, R. DeVore, M. Fornasier, S. Gunturk, Iteratively re-weighted least squares minimization for sparse recovery, Comm. Pure Appl. Math., in press · Zbl 1202.65046 · doi:10.1002/cpa.20303
[12] Davies, M.; Gribonval, R.: Restricted isometry constants where $\ell p$ sparse recovery can fail for 0<p&les;1, IEEE trans. Inform. theory 55, No. 5, 2203-2214 (2009)
[13] Donoho, D.; Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via $\ell 1$ minimization, Proc. natl. Acad. sci. USA 100, No. 5, 2197-2202 (2003) · Zbl 1064.94011 · doi:10.1073/pnas.0437847100
[14] Donoho, D.; Huo, X.: Uncertainty principles and ideal atomic decomposition, IEEE trans. Inform. theory 47, 2845-2862 (2001) · Zbl 1019.94503 · doi:10.1109/18.959265
[15] Donoho, D.: Compressed sensing, IEEE trans. Inform. theory 52, No. 4, 1289-1306 (2006) · Zbl 1288.94016
[16] Figueiredo, M.; Nowak, R.; Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J. Sel. top. Signal process. 1, No. 4, 586-597 (2007)
[17] Foucart, S.; Lai, M.: Sparsest solutions of underdetermined linear systems via $\ell $q-minimization for 0<q&les;1, Appl. comput. Harmon. anal. 26, No. 3, 395-407 (2009) · Zbl 1171.90014
[18] Gordon, Y.; Kalton, N.: Local structure theory for quasi-normed spaces, Bull. sci. Math. 118, 441-453 (1994) · Zbl 0821.46001
[19] R. Gribonval, R.M. Figueras i Ventura, P. Vandergheynst, A simple test to check the optimality of sparse signal approximations, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’05), vol. 5, 2005, pp. V/717 -- V/720 · Zbl 1163.94342
[20] Gribonval, R.; Ventura, R. M. Figueras I.; Vandergheynst, P.: A simple test to check the optimality of sparse signal approximations, EURASIP signal process. 86, No. 3, 496-510 (2006) · Zbl 1163.94342 · doi:10.1016/j.sigpro.2005.05.026
[21] Gribonval, R.; Nielsen, M.: On the strong uniqueness of highly sparse expansions from redundant dictionaries, Lecture notes in comput. Sci. 3195 (2004)
[22] Gribonval, R.; Nielsen, M.: Highly sparse representations from dictionaries are unique and independent of the sparseness measure, Appl. comput. Harmon. anal. 22, No. 3, 335-355 (2007) · Zbl 1133.94011 · doi:10.1016/j.acha.2006.09.003
[23] Guedon, O.; Litvak, A.: Euclidean projections of p-convex body, Lecture notes in math. 1745, 95-108 (2000) · Zbl 0988.52010
[24] Peck, N.: Banach -- Mazur distances and projections on p-convex spaces, Math. Z. 177, No. 1, 131-142 (1981) · Zbl 0448.46018 · doi:10.1007/BF01214343
[25] R. Saab, R. Chartrand, O. Yilmaz, Stable sparse approximations via nonconvex optimization, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 3885 -- 3888
[26] Tropp, J.: Recovery of short, complex linear combinations via l1 minimization, IEEE trans. Inform. theory 51, No. 4, 1568-1570 (2005) · Zbl 1288.94020
[27] P. Vandergheynst, P. Frossard, Efficient image representation by anisotropic refinement in matching pursuit, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, 2001
[28] Den Berg, E. Van; Friedlander, M.: In pursuit of a root
[29] Ventura, R.; Vandergheynst, P.; Frossard, P.: Low rate and scalable image coding with redundant representations, IEEE trans. Image process. 15, No. 3, 726-739 (2006)
[30] P. Wojtaszczyk, Stability and instance optimality for gaussian measurements in compressed sensing, Found. Comput. Math. (2009), doi:10.1007/s10208-009-9046-4, in press · Zbl 1189.68060