zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans. (English) Zbl 1200.91297
Summary: We investigate asset-allocation strategies open to members of defined-contribution pension plans with a model that incorporates asset, salary (labour-income) and interest-rate risk. We propose a novel form of terminal utility function, incorporating habit formation, that uses the member’s final salary as a numeraire. The paper discusses various properties and characteristics of the optimal asset-allocation strategy both with and without the presence of non-hedgeable salary risk. Finally, we compare the performance of the optimal strategy with some popular alternatives used by pension providers and we conclude that it significantly enhances the welfare of a wide range of potential plan members relative to these other strategies.

91G50Corporate finance
93E20Optimal stochastic control (systems)
91B30Risk theory, insurance
91G10Portfolio theory
Full Text: DOI
[1] Ando, A.; Modigliani, F.: The ’life cycle’ hypothesis of saving: aggregate implications and tests. American economic review 53, 55-84 (1963)
[2] Björk, T.: Arbitrage in theory in continuous time. (1998) · Zbl 1140.91038
[3] Black, F.; Jones, R.: Simplifying portfolio insurance for corporate pension plans. Journal of portfolio management 14, 33-37 (1988)
[4] Black, F.; Perold, A.: Theory of constant proportion portfolio insurance. Journal of economic dynamics and control 16, 403-426 (1992) · Zbl 0825.90056
[5] Blake, D.; Cairns, A. J. G.; Dowd, K.: Pensionmetrics I: Stochastic pension plan design and value at risk during the accumulation phase. Insurance: mathematics and economics 29, 187-215 (2001) · Zbl 0989.62057
[6] Boulier, J. -F.; Huang, S. -J.; Taillard, G.: Optimal management under stochastic interest rates: the case of a protected pension fund. Insurance: mathematics and economics 28, 173-189 (2001) · Zbl 0976.91034
[7] Cairns, A. J. G.: Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time. ASTIN bulletin 30, 19-55 (2000) · Zbl 1018.91028
[8] Constantinides, G. M.: Habit formation: a resolution of the equity premium puzzle. The journal of political economy 98, 519-543 (1990)
[9] Cox, J. C.; Huang, C. -F.: A variational problem arising in financial economics. Journal of mathematical economics 20, 465-487 (1991) · Zbl 0734.90009
[10] Deelstra, G.; Grasselli, M.; Koehl, P. -F.: Optimal investment strategies in a CIR framework. Journal of applied probability 37, 936-946 (2000) · Zbl 0989.91040
[11] Duffie, D.; Fleming, W.; Soner, H. M.; Zariphopoulou, T.: Hedging in incomplete markets with HARA utility. Journal of economic dynamics and control 21, 753-782 (1997) · Zbl 0899.90026
[12] Epstein, L. G.; Zin, S. E.: Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937-969 (1989) · Zbl 0683.90012
[13] Gollier, C., Pratt, J.W., 1996. Risk vulnerability and the tempering effect of background risk. Econometrica 64, 1109 -- 1123. · Zbl 0856.90014
[14] Karatzas, I.; Lehoczky, J. P.; Shreve, S. E.: Optimal portfolio and consumption decisions for a small investor on a finite horizon. SIAM journal of control and optimization 25, 1557-1586 (1987) · Zbl 0644.93066
[15] Kimball, M.S., 1993. Standard risk aversion. Econometrica 61, 589 -- 611. · Zbl 0771.90017
[16] Korn, R.: Optimal portfolios. (1997) · Zbl 0931.91017
[17] Korn, R., Krekel, M., 2002. Optimal portfolios with fixed consumption and income streams. Working Paper, University of Kaiserslautern.
[18] Liu, J., 2005. Portfolio selection in stochastic environments. Working Paper, Anderson School of Management, UCLA.
[19] Malkiel, B. G.: A random walk down wall street. (2003)
[20] Merton, R. C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Review of economics and statistics 51, 247-257 (1969)
[21] Merton, R. C.: Optimum consumption and portfolio rules in a continuous-time model. Journal of economic theory 3, 373-413 (1971) · Zbl 1011.91502
[22] Merton, R. C.: Continuous-time in finance. (1990) · Zbl 1019.91502
[23] øksendal, B.: Stochastic in differential equations. (1998) · Zbl 0897.60056
[24] Pratt, J.W., Zeckhauser, R.J., 1987. Proper risk aversion. Econometrica 55, 143 -- 154. · Zbl 0612.90006
[25] Ryder, H. E.; Heal, G. M.: Optimum growth with intertemporally dependent preferences. Review of economic studies 40, 1-33 (1973) · Zbl 0261.90007
[26] Sundaresan, S. M.: Intertemporally dependent preferences and the volatility of consumption and wealth. Review of financial studies 2, 73-89 (1989)
[27] Sundaresan, S.; Zapatero, F.: Valuation, optimal asset allocation and retirement incentives of pension plans. Review of financial studies 10, 631-660 (1997)
[28] Vasicek, O. E.: An equilibrium characterisation of the term structure. Journal of financial economics 5, 177-188 (1977)