zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On some basic properties of differentiation in intuitionistic fuzzy normed spaces. (English) Zbl 1201.03049
Summary: {\it M. Mursaleen} and {\it S. A. Mohiuddine} [Chaos Solitons Fractals 42, No. 2, 1010--1015 (2009; Zbl 1200.46068)], introduced Fréchet differentiation of nonlinear operators between Intuitionistic Fuzzy normed spaces as a generalization of notions given by {\it Y. Yılmaz} [Chaos Solitons Fractals 41, No. 1, 473--484 (2009; Zbl 1200.46070)]. In this work, we want to advance nonlinear theory of Intuitionistic Fuzzy bounded operators by introducing chain rule and some algebraic properties of Fréchet differentiation of operators between Intuitionistic Fuzzy normed spaces.

03E72Fuzzy set theory
Full Text: DOI
[1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Science-Technical Library of Bulg. Academy of Science, 1697/84) (in Bulgarian).
[2] El Naschie, M. -S.: On the uncertainty of Cantorian geometry and the two-slit experiment, Chaos, solitons fractals 9, 517-529 (1998) · Zbl 0935.81009 · doi:10.1016/S0960-0779(97)00150-1
[3] El Naschie, M. -S.: On the unification of heterotic strings, M-theory and $\varepsilon \infty $-theory, Chaos, solitons fractals 11, 2397-2408 (2000) · Zbl 1008.81511
[4] Nicolis, J. S.; Nicolis, G.; Nicolis, C.: Nonlinear dynamics and the two-slit delayed experiment, Chaos, solitons and fractals 12, 407-416 (2001) · Zbl 1066.37503 · doi:10.1016/S0960-0779(00)00190-9
[5] Atanassov, K.; Pasi, G.; Yager, R.: Intuitionistic fuzzy interpretations of multi-measurement tool multi-criteria decision making, Notes on intuitionistic fuzzy sets 8, No. 3, 66-74 (2002) · Zbl 1230.90201
[6] K. Atanassov, G. Pasi, R. Yager, Intuitionistic fuzzy interpretations of multi-person multicriteria decision making, in: Proceedings of 2002 First International IEEE Symposium Intelligent Systems, vol. 1, pp. 115--119. · Zbl 05210876
[7] A. Stamenov, A property of the extended in intuitionistic fuzzy modal operator Fa,b, in: Proceedings of the Second International IEEE Symposium: Intelligent Systems, Varna, June 22--24 2004, vol. 3, pp. 16--17.
[8] Liu, H. -W.; Wang, G. -J.: Multi-criteria decision-making methods based on intuitionistic fuzzy sets, European journal of operational research 179, No. 1, 220-233 (2007) · Zbl 1163.90558 · doi:10.1016/j.ejor.2006.04.009
[9] Park, J. -H.: Intuitionistic fuzzy metric spaces, Chaos, solitons fractals 22, 1039-1046 (2004) · Zbl 1060.54010
[10] Saadati, R.; Park, J. -H.: On the intuitionistic fuzzy topological spaces, Chaos, solitons fractals 27, 331-344 (2006) · Zbl 1083.54514 · doi:10.1016/j.chaos.2005.03.019
[11] George, V.; Romaguera, S.; Veeramani, P.: A note on intuitionistic fuzzy metric spaces, Chaos, solitons fractals 28, 902-905 (2006) · Zbl 1096.54003
[12] Lael, F.; Nourouzi, K.: Some results on the IF-normed spaces, Chaos, solitons fractals 37, No. 3, 931-939 (2008) · Zbl 1137.54304
[13] Mursaleen, M.; Mohiuddine, S. A.: Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative, Chaos, solitons fractals 42, No. 2, 1010-1015 (2009) · Zbl 1200.46068 · doi:10.1016/j.chaos.2009.02.041
[14] Yılmaz, Y.: Fréchet differentiation of nonlinear operators between fuzzy normed spaces, Chaos, solitons fractals 41, No. 1, 473-484 (2009) · Zbl 1200.46070 · doi:10.1016/j.chaos.2008.02.011