Anastassiou, George A. Principles of delta fractional calculus on time scales and inequalities. (English) Zbl 1201.26001 Math. Comput. Modelling 52, No. 3-4, 556-566 (2010). Summary: Here we develop the Delta Fractional Calculus on Time Scales. Then we produce related integral inequalities of types: Poincaré, Sobolev, Opial, Ostrowski and Hilbert-Pachpatte. Finally, we give inequalities’ applications on the time scale \(\mathbb{R}\). Cited in 43 Documents MSC: 26A33 Fractional derivatives and integrals 26D15 Inequalities for sums, series and integrals 26E70 Real analysis on time scales or measure chains Keywords:fractional calculus on time scales; delta Poincaré inequality; delta Sobolev inequality; delta Opial inequality; delta Ostrowski inequality; delta Hilbert-Pachpatte inequality PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Math. Comput. Modelling 52, No. 3--4, 556--566 (2010; Zbl 1201.26001) Full Text: DOI References: [1] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (2001), Birkhaüser: Birkhaüser Boston · Zbl 0978.39001 [2] Bohner, M.; Guseinov, G. S., Multiple Lebesgue integration on time scales, Advances in Difference Equations, 1-12 (2006), Article ID 26391 [3] Agarwal, R.; Bohner, M., Basic Calculus on time scales and some of its applications, Results in Mathematics, 35, 1-2, 3-22 (1999) · Zbl 0927.39003 [4] Agarwal, R.; Bohner, M.; Peterson, A., Inequalities on time scales: a survey, Mathematical Inequalities & Applications, 4, 4, 535-557 (2001) · Zbl 1021.34005 [6] Bohner, M.; Guseinov, G., Double integral calculus of variations on time scales, Computers & Mathematics with Applications, 54, 45-57 (2007) · Zbl 1131.49019 [7] Bohner, M.; Luo, H., Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Advances in Difference Equations, 1-15 (2006), Article ID 54989 · Zbl 1139.39024 [8] Guseinov, G., Integration on time scales, Journal of Mathematical Analysis and Applications, 285, 107-127 (2003) · Zbl 1039.26007 [9] Higgins, R.; Peterson, A., Cauchy functions and Taylor’s formula for time scales \(T\), (Aulbach, B.; Elaydi, S.; Ladas, G., Proc. Sixth. Internat. Conf. on Difference equations. Proc. Sixth. Internat. Conf. on Difference equations, New Progress in Difference Equations (2001), Chapman & Hall/CRC: Chapman & Hall/CRC Augsburg, Germany), 299-308 · Zbl 1065.39032 [11] Liu, Wenjun; Anh Ngô, Quôc; Chen, Wenbing, Ostrowski type inequalities on time scales for double integrals, Acta Applicandae Mathematicae, 110, 477-497 (2010) · Zbl 1194.26030 [12] Whittaker, E. T.; Watson, G. N., A Course in Modern Analysis (1927), Cambridge University Press · Zbl 0108.26903 [13] Bohner, M.; Guseinov, G., The Convolution on time scales, Abstract and Applied Analysis, 2007 (2007), Article ID 58373, 24 pages · Zbl 1155.39010 [14] Atici, F.; Eloe, P., A transform method in discrete fractional calculus, International Journal of Difference Equations, 2, #2, 165-176 (2007) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.