×

Boundedness results for a certain third order nonlinear differential equation. (English) Zbl 1201.34055

The authors consider a class of third order non-linear differential equations of the form
\[ \dddot{x} + f(\ddot {x}) + g(\dot {x}) + h(x) = p(t,x,\dot {x},\ddot {x}), \tag{1} \]
where \(f, g, h \in C(\mathbb R ,\mathbb R )\), \(p \in C(\mathbb R ^ + \times \mathbb R ^3,\mathbb R )\), \( \mathbb R ^ + = [0,\infty )\). The authors give some new sufficient conditions which guarantee the boundedness and uniform ultimate boundedness of the solutions (1). By defining an appropriate Lyapunov function, they prove their main results.
Reviewer: Cemil Tunç (Van)

MSC:

34C11 Growth and boundedness of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ademola, T. A.; Ogundiran, M. O.; Arawomo, P. O.; Adesina, O. A., Stability results for the solutions of a certain third order nonlinear differential equation, Math. Sci. Res. J., 12, 6, 124134 (2008)
[2] Afuwape, A. U., Further ultimate boundedness results for a third order nonlinear system of differential equations, Boll. Un. Mat. Ital. C (6), 4, 1, 347-361 (1985) · Zbl 0592.34024
[4] Afuwape, A. U., Remarks on Barbashin-Ezeilo problem on third order nonlinear differential equations, J. Math. Anal. Appl., 317, 613-619 (2006) · Zbl 1099.34039
[5] Afuwape, A. U.; Adesina, O. A., On the bounds for mean-values of solutions to certain third order nonlinear differential equations, Fasc. Math., 36, 5-14 (2005) · Zbl 1127.34019
[6] Andres, J., Boundedness results for solutions of the equation \(\overset{\cdots}{x} + a \ddot{x} + g(x) \dot{x} + h(x) = p(t)\) without the hypothesis \(h(x) sgnx \)⩾0 for ∣\(x\)∣>\(R\), Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 80, 8, 533-539 (1986) · Zbl 0722.34027
[7] Bereketogˇlu, H.; Györi, I., On the boundedness of solutions of a third order nonlinear differential equation, Dyn. Syst. Appl., 6, 2, 263-270 (1997) · Zbl 0883.34059
[8] Ezeilo, J. O.C., A note on a boundedness theorem for some third order differential equations, J. London Math. Soc., 36, 439-444 (1961) · Zbl 0104.06501
[9] Ezeilo, J. O.C., An elementary proof of a boundedness theorem for a certain third order differential equation, J. London Math. Soc., 38, 11-16 (1963) · Zbl 0116.06902
[10] Ezeilo, J. O.C., Further results for the solutions of a third order differential equation, Proc. Camb. Phil. Soc., 59, 111-116 (1963) · Zbl 0115.30501
[11] Ezeilo, J. O.C., A boundedness theorem for a certain third order differential equation, Proc. London Math. Soc., 13, 3, 99-124 (1963) · Zbl 0108.09001
[12] Ezeilo, J. O.C., A generalization of a boundedness theorem for the equation \(\overset{\cdots}{x} + \ddot{x} + \varphi_2(\dot{x}) + \varphi_3(x) = \psi(t, x, \dot{x}, \ddot{x})\), Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 50, 13, 424-431 (1971)
[13] Ezeilo, J. O.C.; Tejumola, H. O., Boundedness theorems for certain third order differential equations, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 55, 194-201 (1973) · Zbl 0281.34048
[14] Hara, T., On the uniform ultimate boundedness of solutions of certain third order differential equations, J. Math. Anal. Appl., 80, 533-544 (1981) · Zbl 0484.34024
[15] Qian, C., Asymptotic behavior of a third order nonlinear differential equation, J. Math. Anal. Appl., 284, 1, 191-205 (2003) · Zbl 1054.34078
[16] Reissig, R.; Sansone, G.; Conti, R., Nonlinear Differential Equations of Higher Order (1974), Noordhoff International Publishing: Noordhoff International Publishing Leyden · Zbl 0275.34001
[17] Rouche, N.; Habets, N.; Laloy, M., Stability theory by Lyapunov’s direct method, Appl. Math. Sci., 22 (1977) · Zbl 0364.34022
[18] Swick, K. E., Asymptotic behavior of the solutions of certain third order differential equations, SIAM J. Appl., 19, 1, 96-102 (1970) · Zbl 0212.11403
[19] Swick, K. E., Boundedness and stability for a nonlinear third order differential equation, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 56, 20, 859-865 (1974) · Zbl 0326.34062
[20] Tejumola, H. O., A note on the boundedness of solutions of some nonlinear differential equations of the third order, Ghana J. of Sci., 11, 2, 117-118 (1970) · Zbl 0215.14806
[21] Tejumola, H. O., Periodic boundary value problems for some fifth, forth and third order ordinary differential equations, J. Nigerian Math. Soc., 25, 37-46 (2006)
[22] Tunç, C., On the asymptotic behavior of solutions of certain third order nonlinear differential equations, J. Appl. Math. Stoc. Anal., 1, 29-35 (2005) · Zbl 1077.34052
[23] Tunç, C., Boundedness of solutions of a third- order nonlinear differential equation, J. Inequal. Pure Appl. Math., 6, 1, 1-6 (2005), Art.3 · Zbl 1082.34514
[24] Yoshizawa, T., Stability Theory and Existence of Periodic Solutions and Almost Periodic Solutions (1975), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin · Zbl 0304.34051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.