×

Numerical solutions to integral equations equivalent to differential equations with fractional time. (English) Zbl 1201.35020

This paper presents an approximate method of solving a fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. In most of applications related to fractional differential or fractional integro-differential equations, the numerical methods are limited to \(1+1\) (time + space) dimensions. This paper presents a different method for solving a fractional integro-differential equation which can handle more dimensional cases within a good approximation. The method is limited to cases when the initial condition is smooth enough with respect to space variables \(x\). In such cases the approach works also for \((1+2)\) and \((1+3\)) dimensions. More precisely the approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.

MSC:

35A35 Theoretical approximation in context of PDEs
45D05 Volterra integral equations
65R20 Numerical methods for integral equations
35R09 Integro-partial differential equations
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and der Vorst, H. V. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, PA. · Zbl 0814.65030
[2] Bazhlekova, E. (2001). Fractional Evolution Equations in Banach Space, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven.
[3] Ciesielski, M. and Leszczyński, J. (2006). Numerical treatment of an initial-boundary value problem for fractional partial differential equations, Signal Processing 86(10): 2619-2631. · Zbl 1172.94391
[4] Fujita, Y. (1990). Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka Journal of Mathematics 27(2): 309-321. · Zbl 0790.45009
[5] Gambin, Y., Massiera, G., Ramos, L., Ligoure, C. and Urbach, W. (2005). Bounded step superdiffusion in an oriented hexagonal phase, Physical Review Letters 94(11): 110602.
[6] Goychuk, I., Heinsalu, E., Patriarca, M., Schmid, G. and Hänggi, P. (2006). Current and universal scaling in anomalous transport, Physical Review E 73(2): 020101 ‘(R)’.
[7] Guermah, S., Djennoune, S. and Betteyeb, M. (2008). Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science 18(2): 213-222, DOI: 10.2478/v10006-008-0019-6. · Zbl 1234.93014
[8] Heinsalu, E., Patriarca, M., Goychuk, I. and Hänggi, P. (2009). Fractional Fokker-Planck subdiffusion in alternating fields, Physical Review E 79(4): 041137.
[9] Heinsalu, E., Patriarca, M., Goychuk, I., Schmid, G. and Hänggi, P. (2006). Fokker-Planck dynamics: Numerical algorithm and simulations, Physical Review E 73(4): 046133.
[10] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0. · Zbl 1235.34019
[11] Kou, S. and Sunney Xie, X. (2004). Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule, Physical Review Letters 93(18): 180603.
[12] Labeyrie, G., Vaujour, E., Müller, C., Delande, D., Miniatura, C., Wilkowski, D. and Kaiser, R. (2003). Slow diffusion of light in a cold atomic cloud, Physical Review Letters 91(22): 223904.
[13] Meltzer, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339(1): 1-77. · Zbl 0984.82032
[14] Ratynskaia, S., Rypdal, K., Knapek, C., Kharpak, S., Milovanov, A., Ivlev, A., Rasmussen, J. and Morfill, G. (2006). Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma, Physical Review Letters 96(10): 105010.
[15] Rozmej, P. and Karczewska, A. (2005). Numerical solutions to integrodifferential equations which interpolate heat and wave equations, International Journal on Differential Equations and Applications 10(1): 15-27. · Zbl 1100.65127
[16] Saad, Y. and Schultz, M. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing 7(3): 856-869. · Zbl 0599.65018
[17] Schneider, W. and Wyss, W. (1989). Fractional diffusion and wave equations, Journal of Mathematical Physics 30(4): 134-144. · Zbl 0692.45004
[18] Van der Vorst, H. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM Journal on Scientific and Statistical Computing 13(2): 631-644. · Zbl 0761.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.