×

New existence of periodic solutions for second order non-autonomous Hamiltonian systems. (English) Zbl 1201.37094

The authors consider the second order Hamiltonian system \(\ddot x(t)-B(t)x(t)+\nabla H(t,x)=0\). They show that under some conditions on \(B\) and \(H\) this system has a nontrivial periodic solution. The results extend those contained in [X. M. He and X. Wu, J. Math. Anal. Appl. 341, No. 2, 1354–1364 (2008; Zbl 1133.37025)]. The proofs use a linking and a local linking argument for the Euler-Lagrange functional corresponding to the problem.

MSC:

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
34C25 Periodic solutions to ordinary differential equations

Citations:

Zbl 1133.37025
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bartsch, T.; Willem, M., Periodic solutions of nonautonomous Hamiltonian systems with symmetries, J. reine angew. math., 451, 149-159, (1994) · Zbl 0794.58037
[2] Ding, Y.H., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear anal., 25, 11, 1095-1113, (1995) · Zbl 0840.34044
[3] Faraci, F., Multiple periodic solutions for second order systems with changing sign potential, J. math. anal. appl., 319, 2, 567-578, (2006) · Zbl 1099.34040
[4] Li, S.J.; Willem, M., Applications of local linking to critical point theory, J. math. anal. appl., 189, 1, 6-32, (1995) · Zbl 0820.58012
[5] Fei, G.H., On periodic solutions of superquadratic Hamiltonian systems, Electron. J. differential equations, 2002, 8, 1-12, (2002) · Zbl 0999.37039
[6] Schechter, M., Periodic non-autonomous second order dynamical systems, J. differential equations, 223, 2, 290-302, (2006) · Zbl 1099.34042
[7] Schechter, M., Periodic solution of second order non-autonomous dynamical systems, Bound. value probl., 1-9, (2006)
[8] Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, (1989), Springer-Verlag New York · Zbl 0676.58017
[9] Ou, Z.Q.; Tang, C.L., Existence of homoclinic solution for the second order Hamiltonian systems, J. math. anal. appl., 291, 1, 203-213, (2004) · Zbl 1057.34038
[10] Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS reg. conf. ser. math., vol. 65, (1986), Amer. Math. Soc. Providence, RI · Zbl 0609.58002
[11] Tang, C.L.; Wu, X.P., Notes on periodic solutions of subquadratic second order systems, J. math. anal. appl., 285, 1, 8-16, (2003) · Zbl 1054.34075
[12] Tao, Z.L.; Tang, C.L., Periodic and subharmonic solutions of second-order Hamiltonian systems, J. math. anal. appl., 293, 2, 435-445, (2004) · Zbl 1042.37047
[13] Wu, X., Saddle point characterization and multiplicity of periodic solutions of non-autonomous second-order systems, Nonlinear anal., 58, 7-8, 899-907, (2004) · Zbl 1058.34053
[14] Zhao, F.K.; Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. math. anal. appl., 296, 2, 422-434, (2004) · Zbl 1050.34062
[15] Zou, W.M.; Li, S.J., Infinitely many solutions for Hamiltonian systems, J. differential equations, 186, 1, 141-164, (2002)
[16] He, X.M.; Wu, X., Periodic solutions for a class of nonautonomous second order Hamiltonian systems, J. math. anal. appl., 341, 2, 1354-1364, (2008) · Zbl 1133.37025
[17] Xiao, L.; Tang, X.H., Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign, Nonlinear anal., 69, 11, 3999-4011, (2008) · Zbl 1170.34029
[18] Tang, X.H.; Lin, X.Y., Homoclinic solutions for a class of second-order Hamiltonian systems, J. math. anal. appl., 354, 2, 539-549, (2009) · Zbl 1179.37082
[19] Izydorek, M.; Janczewska, J., Homoclinic solutions for a class of second order Hamiltonian systems, J. differential equations, 219, 2, 375-389, (2005) · Zbl 1080.37067
[20] Tang, X.H.; Xiao, L., Homoclinic solutions for a class of second-order Hamiltonian systems, Nonlinear anal., 71, 3-4, 1140-1152, (2009) · Zbl 1185.34056
[21] Tang, X.H.; Xiao, L., Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential, J. math. anal. appl., 351, 2, 586-594, (2009) · Zbl 1153.37408
[22] Ambrosetti, A.; Rabinowitz, P.H., Dual variational methods in critical point theory and applications, J. funct. anal., 14, 4, 349-381, (1973) · Zbl 0273.49063
[23] Bartsch, T.; Clapp, M., Critical point theory for indefinite functionals with symmetries, J. funct. anal., 138, 1, 107-136, (1996) · Zbl 0853.58027
[24] Wang, Z.Y.; Zhang, J.H.; Zhang, Z.T., Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential, Nonlinear anal., 70, 10, 3672-3681, (2009) · Zbl 1179.34037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.