Sako, Hiroki Concrete classification and centralizers of certain \(\mathbb Z^2 \rtimes SL (2,\mathbb Z)\)-actions. (English) Zbl 1201.46061 J. Math. Soc. Japan 62, No. 1, 135-166 (2010). Summary: We introduce a new class of actions of the group \({\mathbb Z}^{2} \rtimes {SL}(2,{\mathbb Z})\) on finite von Neumann algebras and call them twisted Bernoulli shift actions. We classify these actions up to conjugacy and give an explicit description of their centralizers. We also distinguish many of those actions on the AFD II\(_{1}\) factor in view of outer conjugacy. MSC: 46L55 Noncommutative dynamical systems 46L40 Automorphisms of selfadjoint operator algebras 46L10 General theory of von Neumann algebras Keywords:von Neumann algebras; automorphisms PDF BibTeX XML Cite \textit{H. Sako}, J. Math. Soc. Japan 62, No. 1, 135--166 (2010; Zbl 1201.46061) Full Text: DOI arXiv References: [1] M. Burger, Kazhdan constants for \(SL_{3}(\mbi{Z})\), J. Reine Angew. Math., 413 (1991), 36-67. · Zbl 0704.22009 [2] M. Choda, A continuum of non-conjugate property T actions of \(\mathit{SL}(\mathrm{n},\mbi{Z})\) on the hyperfinite II\(_{1}\)-factor, Math. Japon., 30 (1985), 133-150. · Zbl 0572.46051 [3] A. Connes, Classification of injective factors. Cases \(\text{II}_{1}\), \(\text{II}_{\infty}\), \(\text{III}_{\lambda}\), \(\lambda \neq 1\), Ann. of Math. (2), 104 (1976), 73-115. · Zbl 0343.46042 [4] P. Jolissaint, On property (T) for pairs of topological groups, Enseign. Math. (2), 51 (2005), 31-45. · Zbl 1106.22006 [5] V. F. R. Jones, A converse to Ocneanu’s theorem, J. Operator Theory, 10 (1983), 61-63. · Zbl 0547.46045 [6] Y. Kawahigashi, Cohomology of actions of discrete groups on factors of type II\(_{1}\), Pac. J. Math., 149 (1991), 303-317. · Zbl 0692.46060 [7] R. Nicoara, S. Popa and R. Sasyk, On II\(_{1}\) factors arising from 2-cocycles of \(w\)-rigid groups, J. Funct. Anal., 242 (2007), 230-246. · Zbl 1112.46046 [8] A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Math., 1138 , Springer-Verlag, Berlin, 1985. · Zbl 0608.46035 [9] D. Olesen, G. K. Pedersen and M. Takesaki, Ergodic actions of compact abelian groups, J. Operator Theory, 3 (1980), 237-269. · Zbl 0456.46053 [10] S. Popa, On a class of type II\(_{1}\) factors with Betti numbers invariants, Ann. of Math. (2), 163 (2006), 809-899. · Zbl 1120.46045 [11] S. Popa, Some computations of 1-cohomology groups and construction of non orbit equivalent actions, J. Inst. Math. Jussieu, 5 (2006), 309-332. · Zbl 1092.37003 [12] S. Popa, Some rigidity results for non-commutative Bernoulli shifts, J. Funct. Anal., 230 (2006), 273-328. · Zbl 1097.46045 [13] S. Popa, Cocycle and orbit equivalence superrigidity for malleable actions of \(w\)-rigid groups, Invent. Math., 170 (2007), 243-295. · Zbl 1131.46040 [14] S. Popa and R. Sasyk, On the cohomology of Bernoulli actions, Erg. Theory Dyn. Sys., 26 (2007), 1-11. · Zbl 1201.37004 [15] Y. Shalom, Bounded generation and Kazhdan’s property (T), Inst. Hautes. Études. Sci. Publ. Math., 90 (1999), 145-168. · Zbl 0980.22017 [16] S. Vaes, Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa), Séminaire Bourbaki, exp. no. 961, Astérisque, 311 (2007), pp. 237-294. · Zbl 1194.46085 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.