Izumiya, Shyuichi; Pei, Donghe; Del Carmen Romero Fuster, María Spacelike surfaces in anti de Sitter four-space from a contact viewpoint. (English) Zbl 1201.53063 Proc. Steklov Inst. Math. 267, 156-173 (2009). Summary: We define the notions of \((S_t ^{1} \times S_s ^{2})\)-nullcone Legendrian Gauss maps and \(S_{+}^{2}\)-nullcone Lagrangian Gauss maps on space-like surfaces in anti de Sitter 4-space. We investigate the relationships between singularities of these maps and geometric properties of surfaces as an application of the theory of Legendrian/Lagrangian singularities. By using \(S_{+}^{2}\)-nullcone Lagrangian Gauss maps, we define the notion of \(S_{+}^{2}\)-nullcone Gauss-Kronecker curvatures and show a Gauss-Bonnet type theorem as a global property. We also introduce the notion of horospherical Gauss maps which have geometric properties different from those of the above Gauss maps. As a consequence, we can say that the anti de Sitter space has much richer geometric properties than the other space forms such as Euclidean space, hyperbolic space, Lorentz-Minkowski space and de Sitter space. Cited in 4 Documents MSC: 53C40 Global submanifolds 53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics 83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory Keywords:nullcone Legendrian Gauss maps; anti de Sitter 4-space; singularities; Lagrangian Gauss maps; Gauss-Bonnet type theorem; horospherical Gauss maps × Cite Format Result Cite Review PDF Full Text: DOI References: [1] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, Boston, 1985), Vol. 1. [2] T. Banchoff, T. Gaffney, and C. McCrory, Cusps of Gauss Mappings (Pitman, London, 1982), Res. Notes Math. 55. · Zbl 0478.53002 [3] Th. Bröcker, Differentiable Germs and Catastrophes (Cambridge Univ. Press, Cambridge, 1975), LMS Lect. Note Ser. 17. [4] J. W. Bruce and P. J. Giblin, Curves and Singularities, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992). · Zbl 0770.53002 [5] R. L. Bryant, ”Surfaces of Mean Curvature One in Hyperbolic Space,” in Théorie des variétés minimales et applications, Palaiseau, 1983–1984 (Soc. Math. France, Paris, 1988), Astérisque 154–155, pp. 321–347. [6] S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford Univ. Press, New York, 1983), Int. Ser. Monogr. Phys. 69. · Zbl 0511.53076 [7] C. L. Epstein, ”The Hyperbolic Gauss Map and Quasiconformal Reflections,” J. Reine Angew. Math. 372, 96–135 (1986). · Zbl 0591.30018 [8] V. Guillemin and A. Pollack, Differential Topology (Prentice-Hall, Englewood Cliffs, NJ, 1974). [9] S. Izumiya, M. Kossowski, D. Pei, and M. C. Romero Fuster, ”Singularities of Lightlike Hypersurfaces in Minkowski Four-Space,” Tohoku Math. J. 58, 71–88 (2006). · Zbl 1111.53018 · doi:10.2748/tmj/1145390206 [10] S. Izumiya, J. J. Nuño Ballesteros, and M. C. Romero Fuster, ”Global Properties of Codimension Two Spacelike Submanifolds in Minkowski Space,” Adv. Geom., doi: 10.1515/ADVGEOM.2009.034 (2009). · Zbl 1187.53059 [11] S. Izumiya, D. Pei, and M. C. Romero Fuster, ”The Lightcone Gauss Map of a Spacelike Surface in Minkowski 4-Space,” Asian J. Math. 8, 511–530 (2004). · Zbl 1084.53048 · doi:10.4310/AJM.2004.v8.n3.a7 [12] S. Izumiya, D. Pei, and T. Sano, ”Singularities of Hyperbolic Gauss Maps,” Proc. London Math. Soc., Ser. 3, 86, 485–512 (2003). · Zbl 1041.58017 · doi:10.1112/S0024611502013850 [13] S. Izumiya and M. C. Romero Fuster, ”The Horospherical Gauss-Bonnet Type Theorem in Hyperbolic Space,” J. Math. Soc. Japan 58, 965–984 (2006). · Zbl 1111.53042 · doi:10.2969/jmsj/1179759532 [14] S. Izumiya and M. C. Romero Fuster, ”The Lightlike Flat Geometry on Spacelike Submanifolds of Codimension Two in Minkowski Space,” Sel. Math. 13(1), 23–55 (2007). · Zbl 1141.53066 · doi:10.1007/s00029-007-0033-9 [15] M. Kossowski, ”The S 2-valued Gauss Maps and Split Total Curvature of Space-like Codimension-2 Surface in Minkowski Space,” J. London Math. Soc., Ser. 2, 40, 179–192 (1989). · Zbl 0692.53024 · doi:10.1112/jlms/s2-40.1.179 [16] M. Kossowski, ”The Intrinsic Conformal Structure and Gauss Map of a Light-like Hypersurface in Minkowski Space,” Trans. Am. Math. Soc. 316(1), 369–383 (1989). · Zbl 0691.53046 · doi:10.1090/S0002-9947-1989-0938920-1 [17] J. A. Little, ”On Singularities of Submanifolds of Higher Dimensional Euclidean Spaces,” Ann. Mat. Pura Appl., Ser. 4, 83, 261–335 (1969). · Zbl 0187.18903 · doi:10.1007/BF02411172 [18] J. Martinet, Singularities of Smooth Functions and Maps (Cambridge Univ. Press, Cambridge, 1982), LMS Lect. Note Ser. 58. · Zbl 0522.58006 [19] J. N. Mather, ”Stability of C -Mappings. IV: Classification of Stable Germs by R-Algebras,” Publ. Math., Inst. Hautes Étud. Sci. 37, 223–248 (1969). · Zbl 0202.55102 · doi:10.1007/BF02684889 [20] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman and Co., San Francisco, CA, 1973). [21] J. A. Montaldi, ”On Contact between Submanifolds,” Mich. Math. J. 33, 195–199 (1986). · Zbl 0601.53007 · doi:10.1307/mmj/1029003348 [22] J. Montaldi, ”On Generic Composites of Maps,” Bull. London Math. Soc. 23, 81–85 (1991). · Zbl 0733.58001 · doi:10.1112/blms/23.1.81 [23] B. O’Neill, Semi-Riemannian Geometry (Academic, New York, 1983). [24] G. Wassermann, ”Stability of Caustics,” Math. Ann. 216, 43–50 (1975). · Zbl 0293.58008 · doi:10.1007/BF02547971 [25] H. Whitney, ”On Singularities of Mappings of Euclidean Spaces. I: Mappings of the Plane into the Plane,” Ann. Math., Ser. 2, 62, 374–410 (1955). · Zbl 0068.37101 · doi:10.2307/1970070 [26] V. M. Zakalyukin, ”Lagrangian and Legendrian Singularities,” Functs. Anal. Prilozh. 10(1), 26–36 (1976) [Funct. Anal. Appl. 10, 23–31 (1976)]. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.