×

Positivity of the universal pairing in 3 dimensions. (English) Zbl 1201.57024

Gluing two manifolds along a common boundary yields a closed manifold. Extending to formal linear combinations gives rise to the universal pairing \(p=\langle-,-\rangle\) with values in formal combinations of closed manifolds. In [M. H. Freedman, A. Kitaev, C. Nayak, J. K. Slingerland, K. Walker and Z. Wang, Geom. Topol. 9, 2303–2317 (2005; Zbl 1129.57035)], it is suggested that a fruitful way to think about TQFT is as a representation of this universal pairing onto a finite dimensional complex-valued quotient pairing. A long-standing question is whether TQFT separates \(d\) dimensional manifolds when \(d=3\). A necessary condition would be that \(\langle x,x\rangle\neq 0\) whenever \(x\neq 0\), i.e. that \(p\) be positive. This happens when \(d<3\) but not when \(d>3\) [M. Kreck and P. Teichner, J. Topol. 1, No. 3, 663–670 (2008; Zbl 1151.57035)].
Using a great variety of \(3\)-dimensional techniques, and studying non-trivial JSJ decompositions, the main theorem is that \(p\) is indeed positive in dimension \(3\). The proof involves constructing a complexity function on \(3\)-manifolds which satisfies a gluing axiom which the authors suggest we think of as kind of a topological Cauchy-Schwatz inequality. Along the way, a number of results of independent interest are proven, including a generalization of a result in [I. Agol, P. A. Storm, W. P. Thurston and N. Dunfield, J. Am. Math. Soc. 20, No. 4, 1053–1077 (2007; Zbl 1155.58016)].
This paper is a joy to read.

MSC:

57R56 Topological quantum field theories (aspects of differential topology)
57M50 General geometric structures on low-dimensional manifolds
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ian Agol, Peter A. Storm, and William P. Thurston, Lower bounds on volumes of hyperbolic Haken 3-manifolds, J. Amer. Math. Soc. 20 (2007), no. 4, 1053 – 1077. With an appendix by Nathan Dunfield. · Zbl 1155.58016
[2] Michael Atiyah, The geometry and physics of knots, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. · Zbl 0729.57002
[3] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883 – 927. · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[4] F. Bonahon and L. C. Siebenmann, The characteristic toric splitting of irreducible compact 3-orbifolds, Math. Ann. 278 (1987), no. 1-4, 441 – 479. · Zbl 0629.57007 · doi:10.1007/BF01458079
[5] Hubert L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom. 59 (2001), no. 2, 177 – 267. · Zbl 1039.53034
[6] A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275 – 283. · Zbl 0632.57010 · doi:10.1016/0166-8641(87)90092-7
[7] Bennett Chow and Dan Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004. · Zbl 1086.53085
[8] Tobias H. Colding and William P. Minicozzi II, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York University, Courant Institute of Mathematical Sciences, New York, 1999. · Zbl 1175.53008
[9] Dennis M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157 – 162. · Zbl 0517.53044
[10] Robbert Dijkgraaf and Edward Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), no. 2, 393 – 429. · Zbl 0703.58011
[11] Theodore Frankel, Applications of Duschek’s formula to cosmology and minimal surfaces, Bull. Amer. Math. Soc. 81 (1975), 579 – 582. · Zbl 0302.53003
[12] Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994), no. 2, 343 – 398. · Zbl 0790.58007
[13] Daniel S. Freed and Frank Quinn, Chern-Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993), no. 3, 435 – 472. · Zbl 0788.58013
[14] Michael Freedman, Joel Hass, and Peter Scott, Least area incompressible surfaces in 3-manifolds, Invent. Math. 71 (1983), no. 3, 609 – 642. · Zbl 0482.53045 · doi:10.1007/BF02095997
[15] Michael H. Freedman, Alexei Kitaev, Chetan Nayak, Johannes K. Slingerland, Kevin Walker, and Zhenghan Wang, Universal manifold pairings and positivity, Geom. Topol. 9 (2005), 2303 – 2317. · Zbl 1129.57035 · doi:10.2140/gt.2005.9.2303
[16] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53 – 73. · Zbl 0474.20018
[17] Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7 – 136. · Zbl 0867.53030
[18] Richard S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999), no. 4, 695 – 729. · Zbl 0939.53024 · doi:10.4310/CAG.1999.v7.n4.a2
[19] Joel Hass and Peter Scott, The existence of least area surfaces in 3-manifolds, Trans. Amer. Math. Soc. 310 (1988), no. 1, 87 – 114. · Zbl 0711.53008
[20] Allen Hatcher. Notes on Basic \( 3\)-Manifold Topology. Available from the author’s website, 2000.
[21] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. · Zbl 0345.57001
[22] John Hempel, Residual finiteness for 3-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 379 – 396. · Zbl 0772.57002
[23] William H. Jaco and Peter B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. · Zbl 0471.57001 · doi:10.1090/memo/0220
[24] Klaus Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. · Zbl 0412.57007
[25] Matthias Kreck and Peter Teichner, Positivity of topological field theories in dimension at least 5, J. Topol. 1 (2008), no. 3, 663 – 670. · Zbl 1151.57035 · doi:10.1112/jtopol/jtn016
[26] Marc Lackenby, Heegaard splittings, the virtually Haken conjecture and property (\?), Invent. Math. 164 (2006), no. 2, 317 – 359. · Zbl 1110.57015 · doi:10.1007/s00222-005-0480-x
[27] F. Laudenbach, Sur les 2-sphères d’une variété de dimension 3, Ann. of Math. (2) 97 (1973), 57 – 81 (French). · Zbl 0246.57003 · doi:10.2307/1970877
[28] Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, vol. 125, Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski. · Zbl 0826.22012
[29] William Meeks III, Leon Simon, and Shing Tung Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), no. 3, 621 – 659. · Zbl 0521.53007 · doi:10.2307/2007026
[30] William H. Meeks III and Shing Tung Yau, The equivariant Dehn’s lemma and loop theorem, Comment. Math. Helv. 56 (1981), no. 2, 225 – 239. · Zbl 0469.57005 · doi:10.1007/BF02566211
[31] Pengzi Miao, Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys. 6 (2002), no. 6, 1163 – 1182 (2003). · doi:10.4310/ATMP.2002.v6.n6.a4
[32] Jean-Pierre Otal, Thurston’s hyperbolization of Haken manifolds, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996) Int. Press, Boston, MA, 1998, pp. 77 – 194. · Zbl 0997.57001
[33] Структура пространства-времени, Издат. ”Мир”, Мосцощ, 1972 (Руссиан). Транслатед фром тхе Енглиш бы Л. П. Гриščук анд Н. В. Мицкевиč; Едитед бы Ја. Б. Зел\(^{\приме}\)довиč анд И. Д. Новиков; Щитх ан епилогуе бы тхе аутхор.
[34] Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications, 2002. · Zbl 1130.53001
[35] Grisha Perelman. Ricci flow with surgery on three-manifolds, 2003. · Zbl 1130.53002
[36] Frank Quinn, Lectures on axiomatic topological quantum field theory, Geometry and quantum field theory (Park City, UT, 1991) IAS/Park City Math. Ser., vol. 1, Amer. Math. Soc., Providence, RI, 1995, pp. 323 – 453. · Zbl 0901.18002
[37] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[38] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547 – 597. · Zbl 0725.57007 · doi:10.1007/BF01239527
[39] Justin Roberts, Irreducibility of some quantum representations of mapping class groups, J. Knot Theory Ramifications 10 (2001), no. 5, 763 – 767. Knots in Hellas ’98, Vol. 3 (Delphi). · Zbl 1001.57036 · doi:10.1142/S021821650100113X
[40] Richard Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 111 – 126. · Zbl 0532.53042
[41] Jennifer Schultens, Heegaard genus formula for Haken manifolds, Geom. Dedicata 119 (2006), 49 – 68. · Zbl 1099.57019 · doi:10.1007/s10711-006-9045-4
[42] Peter Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401 – 487. · Zbl 0561.57001 · doi:10.1112/blms/15.5.401
[43] Miles Simon, Deformation of \?\(^{0}\) Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom. 10 (2002), no. 5, 1033 – 1074. · Zbl 1034.58008 · doi:10.4310/CAG.2002.v10.n5.a7
[44] James Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), no. 1, 88 – 111. · Zbl 0006.18501
[45] William P. Thurston. Geometry and topology of \( 3\)-manifolds (a.k.a. Thurston’s notes), 1979.
[46] Friedhelm Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308 – 333; ibid. 4 (1967), 87 – 117 (German). · Zbl 0168.44503 · doi:10.1007/BF01402956
[47] Kevin Walker. TQFTs. Preprint, available at http://canyon23.net/math/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.