zbMATH — the first resource for mathematics

Interval systems over idempotent semiring. (English) Zbl 1201.65070
The paper deals with the solution of certain matrix linear inequalities over idempotent semirings. As examples the (\(\max, +\)) and (\(\max, \min\)) semirings are discussed. The problems are extended to the situation when the entries of the matrices are intervals. To this end suitable extensions of the operations/relations involved are proposed.

65G40 General methods in interval analysis
65F30 Other matrix algorithms (MSC2010)
15A45 Miscellaneous inequalities involving matrices
15B33 Matrices over special rings (quaternions, finite fields, etc.)
16Y60 Semirings
15A80 Max-plus and related algebras
Full Text: DOI arXiv
[1] Baccelli, F.; Cohen, G.; Olsder, G.J.; Quadrat, J.P., Synchronization and linearity: an algebra for discrete event systems, (1992), Wiley & Sons · Zbl 0824.93003
[2] Blyth, T.S.; Janowitz, M.F., Residuation theory, (1972), Pergamon press · Zbl 0301.06001
[3] Carré, B.A., Graphs and networks, (1979), Oxford University Press
[4] Cechlárova, K.; Cuninghame-Green, R.A., Interval systems of MAX-separable linear equations, Linear algebra appl., 340, 215-224, (2002) · Zbl 1004.15009
[5] Croisot, R., Applications residuees, Annnales scientifiques, Paris ecole normale superieure, 73, 453-474, (1956) · Zbl 0073.01103
[6] Cuninghame-Green, R.A., Minimax algebra, Lecture notes in economics and mathematical systems, vol. 166, (1979), Springer
[7] Cuninghame-Green, R.A.; Butkovič, P., The equation \(\mathit{ax} = \mathit{by}\) over \((\max, +)\), Theoret. comput. sci., 293, 3-12, (2003) · Zbl 1021.65022
[8] Derderian, J., Residuated mappings, Pacific J. math., 20, 35-44, (1967) · Zbl 0145.01602
[9] S. Gaubert, Theorie des Systemes Lineaires dans les Dioides, These, Ecole des Mines de Paris, July 1992.
[10] Gaubert, S.; Katz, R., Maxplus convex geometry, Lecture notes in comput. sci. LNCS, 4136, 192-206, (2006) · Zbl 1134.52303
[11] L. Hardouin, B. Cottenceau, M. Lhommeau, Minmaxgd a library for computation in semiring of formal series, 2006. http://www.istia.univangers.fr/ hardouin/outils.html.
[12] M. Lhommeau, L. Hardouin, B. Cottenceau, J.-L. Boimond, Data processing tool for calculation in dioid, in: WODES’2000, Workshop on Discrete Event Systems, Ghent, Belgique, Août, 2000. · Zbl 1012.68239
[13] M. Lhommeau, L. Hardouin, J.L. Ferrier, I. Ouerghi, Interval analysis in dioid: Application to robust open loop control for timed event graphs, in: 44th CDC-ECC’05, Sevilla, 2005.
[14] Litvinov, G.L.; Sobolevski, A.N., Idempotent interval analysis and optimization problems, Reliab. comput., 7, 5, 353-377, (2001) · Zbl 1012.65065
[15] I. Ouerghi, L. Hardouin, A precompensator synthesis for \(p\)-temporal event graphs, in: LNCS, POSTA’06, Grenoble, France, vol. 341, Springer, 2006. · Zbl 1127.93030
[16] Moore, R.E., Methods and applications of interval analysis, (1979), SIAM · Zbl 0417.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.