zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of a new family of iterative processes for quadratic polynomials. (English) Zbl 1201.65071
A family of iterative methods is proposed for solving quadratic equations $f(z)=0$ with $f:{\Bbb C}\to{\Bbb C}$. These iterative methods include Newton and Chebyshev methods as special cases. The authors show convergence and dynamical behaviour of these iterative methods, particularly relating the coefficients of the iteration methods to the Catalan numbers, and the rational maps associated with these methods to the Catalan triangle. Computer graphs are used to illustrate the patterns of Julia sets of the methods.

65H04Roots of polynomial equations (numerical methods)
30C15Zeros of polynomials, etc. (one complex variable)
65E05Numerical methods in complex analysis
Full Text: DOI
[1] Beardon, A. F.: Iteration of rational functions, (1991) · Zbl 0742.30002
[2] Argyros, I. K.: Newton methods, (2005)
[3] Blanchard, P.: The dynamics of Newton’s method, Proc. sympos. Appl. math. 49, 139-154 (1994) · Zbl 0853.58086
[4] Amat, S.; Busquier, S.; Plaza, S.: A construction of attracting periodic orbits of some classical third order iterative methods, J. comput. Appl. math. 189, No. 1--2, 22-33 (2006) · Zbl 1113.65047 · doi:10.1016/j.cam.2005.03.049
[5] Gander, W.: On halley’s iteration method, Amer. math. Monthly 92, 131-134 (1985) · Zbl 0574.65041 · doi:10.2307/2322644
[6] R.M. Dickau, Catalan Numbers. http://mathforum.org/advanced/robertd/catalan.html
[7] E.W. Weisstein, et al. Catalan Number. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CatalanNumber.html
[8] Shapiro, L. W.: A Catalan triangle, Discrete math. 14, 83-90 (1976) · Zbl 0323.05004 · doi:10.1016/0012-365X(76)90009-1
[9] Deutsch, E.; Shapiro, L.: A survey of the fine numbers, Discrete math. 241, 241-265 (2001) · Zbl 0992.05011 · doi:10.1016/S0012-365X(01)00121-2
[10] Gutiérrez, J. M.; Hernández, M. A.; Miana, P.; Romero, N.: New identities in the Catalan triangle, J. math. Anal. appl. 341, 52-61 (2008) · Zbl 1147.05003 · doi:10.1016/j.jmaa.2007.09.073
[11] Sloane, N.:
[12] Smale, S.: On the efficiency of algorithms of analysis, Bull. allahabad math. Soc. 13, 87-121 (1985) · Zbl 0592.65032 · doi:10.1090/S0273-0979-1985-15391-1
[13] Mcmullen, C.: Families of rational maps and iterative root-finding algorithms, Ann. of math. 125, 467-493 (1987) · Zbl 0634.30028 · doi:10.2307/1971408
[14] Kneisl, K.: Julia sets for the super-Newton method, Cauchy’s method and halley’s method, Chaos 11, No. 2, 359-370 (2001) · Zbl 1080.65532 · doi:10.1063/1.1368137
[15] Hilton, P.; Pederson, J.: Catalan numbers, their generalization and their uses, Math. intelligencer 13, 64-75 (1991) · Zbl 0767.05010 · doi:10.1007/BF03024089
[16] Carleson, L.; Gamelin, T.: Complex dynamics, (1995) · Zbl 0782.30022
[17] Varona, J. L.: Graphic and numerical comparisons between iterative methods, Math. intelligencer 24, No. 1, 37-46 (2002) · Zbl 1003.65046 · doi:10.1007/BF03025310
[18] Amat, S.; Bermúdez, C.; Busquier, S.; Plaza, S.: On the dynamics of the Euler iterative function, Appl. math. Comput. 197, No. 2, 725-732 (2008) · Zbl 1137.65027 · doi:10.1016/j.amc.2007.08.086
[19] Amat, S.; Bermúdez, C.; Busquier, S.; Carrasco, J.; Plaza, S.: Super-attracting perodic orbits for a classical third order method, J. comput. Appl. math. 206, No. 1, 599-602 (2007) · Zbl 1115.65052 · doi:10.1016/j.cam.2006.08.032
[20] Melman, A.: Geometry and convergence of Euler’s and halley’s methods, SIAM rev. 39, 728-735 (1997) · Zbl 0907.65045 · doi:10.1137/S0036144595301140
[21] Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204