Numerical solution of system of nonlinear second-order integro-differential equations. (English) Zbl 1201.65138

Summary: Numerical solution of a system of nonlinear second-order integro-differential equations with boundary conditions of the Fredholm and Volterra types by means of the Sinc-collocation method is considered. The method is effective for approximation in the case of the presence of end-point singularities. Properties of the Sinc-collocation method required for our subsequent development are given and utilized to reduce the computation of boundary value problems to some algebraic equations. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.


65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
45J05 Integro-ordinary differential equations
Full Text: DOI


[1] Linz, P., Analytical and Numerical Methods for Volterra Equations (1985), SIAM: SIAM Philadelphia, PA · Zbl 0566.65094
[2] Abdul Jerri, J., Introduction to Integral Equations with Applications (1999), John Wiley and Sons: John Wiley and Sons New York · Zbl 0938.45001
[3] Abbasbandy, S.; Taati, A., Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation, J. Comput. Appl. Math., 231, 106-113 (2009) · Zbl 1170.65101
[4] Khani, A.; Mohseni Moghadam, M.; Shahmorad, S., Numerical solution of special class of system of non-linear Volterra integro-differential equations by a simple high accuracy method, Bull. Iran. Math. Soc., 34, 2, 141-152 (2008) · Zbl 1168.65428
[5] Ebadi, G.; Rahimi, M. Y.; Shahmorad, S., Numerical solution of the system of nonlinear Fredholm integro-differential equations by the operational Tau method with an error estimation, Sci. Iran., 14, 546-554 (2007) · Zbl 1178.65146
[6] Stenger, F., Numerical Methods Based on Sinc and Analytic Functions (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0803.65141
[7] Lund, J.; Bowers, K., Sinc Methods for Quadrature and Differential Equations (1992), SIAM: SIAM Philadelphia, PA · Zbl 0753.65081
[8] Eggert, N.; Jarratt, M.; Lund, J., Sinc function computations of the eigenvalues of Sturm-Lioville problems, J. Comput. Phys., 69, 209-229 (1987) · Zbl 0618.65073
[9] Lund, J.; Rilay, B. V., A Sinc-collocation method for the computation of the eigenvalues of the radial Schrodinger equation, IMA J. Numer. Anal., 4, 83-98 (1984) · Zbl 0544.65057
[10] Carlson, T. S.; Dockery, J.; Lund, J., A Sinc-collocation method for initial value problems, Math. Comp., 66, 215-235 (1997) · Zbl 0854.65054
[11] Al-Khaled, K., Sinc numerical solution for solitons and solitary waves, J. Comput. Appl. Math., 130, 283-292 (2001) · Zbl 1010.65043
[12] El-Gamel, M., Sinc and the numerical solution of fifth-order boundary value problems, Appl. Math. Comput., 187, 1417-1433 (2007) · Zbl 1121.65087
[13] Weber, V.; Daul, C.; Baltensperger, R., Radial numerical integrations based on the sinc function, Comput. Phys. Commun., 163, 133-142 (2004) · Zbl 1196.65056
[14] Koonprasert, S.; Bowers, K. L., Block matrix Sinc-Galerkin solution of the wind-driven current problem, Appl. Math. Comput., 155, 607-635 (2004) · Zbl 1126.65320
[15] Rashidinia, J.; Zarebnia, M., Solution of a Volterra integral equation by the Sinc-collocation method, J. Comput. Appl. Math., 206, 801-813 (2007) · Zbl 1120.65136
[16] Rashidinia, J.; Zarebnia, M., Convergence of approximate solution of system of Fredholm integral equations, J. Math. Anal. Appl., 333, 1216-1227 (2007) · Zbl 1120.65137
[17] Abdella, K.; Yu, X.; Kucuk, I., Application of the Sinc method to a dynamic elasto-plastic problem, J. Comput. Appl. Math., 223, 626-645 (2009) · Zbl 1153.74051
[18] Stenger, F., Fourier series for zeta function via Sinc, Linear Algebra Appl., 429, 2636-2639 (2008) · Zbl 1149.42002
[19] Stenger, F., Polynomial function and derivative approximation of Sinc data, J. Complexity, 25, 292-302 (2009) · Zbl 1180.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.