×

An analytical study for Fisher type equations by using homotopy perturbation method. (English) Zbl 1201.65187

Summary: The homotopy perturbation method is applied to Fisher type equations. The solutions introduced in this study are in recursive sequence forms which can be used to obtain the closed form of the solutions if they are required. The method is tested on various examples which reveal the effectiveness and the simplicity of the method.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kawahara, T.; Tanaka, M., Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation, Physics Letters A, 97, 8, 311-314 (1983)
[2] Sheratt, J., On the transition from initial data traveling waves in the Fisher-KPP equation, Dynamics and Stability of Systems, 13, 2, 167-174 (1998)
[3] Brazhnik, P.; Tyson, J., On traveling wave solutions of Fisher’s equation in two spatial dimensions, SIAM Journal on Applied Mathematics, 60, 2, 371-391 (1999) · Zbl 0957.35065
[4] Malfliet, W., Solitary wave solutions of nonlinear wave equations, American Journal of Physics, 60, 7, 650-654 (1992) · Zbl 1219.35246
[5] Wang, X. Y., Exact and explicit solitary wave solutions for the generalized Fisher equation, Physics Letters A, 131, 4-5, 277-279 (1988)
[6] Alowitz, M.; Zepetella, A., Explicit solutions of Fisher’s equation for a special wave speed, Bulletin of Mathematical Biology, 41, 835-840 (1979)
[7] Jone, D. S.; Sleeman, B. D., Differential Equations and Mathematical Biology (2003), Chapman & Hall/CRC: Chapman & Hall/CRC New York · Zbl 1020.92001
[8] Wazwaz, A. M.; Gorguis, A., An analytical study of Fisher’s equation by using Adomian decomposition method, Applied Mathematics and Computation, 154, 609-620 (2004) · Zbl 1054.65107
[10] He, J. H., Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039
[11] He, J. H., New interpretation of homotopy perturbation method, International Journal of Modern Physics B, 20, 2561-2568 (2006)
[12] He, J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, International Journal of Non-Linear Mechanics, 35, 37-43 (2000) · Zbl 1068.74618
[13] He, J. H., Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 257-262 (1999) · Zbl 0956.70017
[14] He, J. H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons & Fractals, 26, 695-700 (2005) · Zbl 1072.35502
[15] He, J. H., Homotopy perturbation method for bifurcation of nonlinear problems, International Journal of Nonlinear Sciences and Numerical Simulation, 6, 207-208 (2005) · Zbl 1401.65085
[16] Öziş, T.; Yıldırım, A., A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity, Chaos, Solitons & Fractals, 34, 3, 989-991 (2007)
[17] Öziş, T.; Yıldırım, A., Traveling wave solution of Korteweg-de Vries equation using He’s homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 239-242 (2007)
[18] Öziş, T.; Yıldırım, A., A comparative study of He’s homotopy perturbation method for determining frequency-amplitude relation of a non-linear oscillator with discontinuities, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 243-248 (2007)
[19] Yıldırım, A.; Öziş, T., Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method, Physics Letters A, 369, 70-76 (2007) · Zbl 1209.65120
[20] Yıldırım, A., Exact solutions of nonlinear differential-difference equations by He’s homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 9, 2, 111-114 (2008)
[21] Yıldırım, A., On the solution of the nonlinear Korteweg-de Vries equation by the homotopy perturbation method, Communications in Numerical Methods in Engineering (2008)
[22] Ozis, T.; Agirseven, D., He’s homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients, Physics Letters A, 372, 5944-5950 (2008) · Zbl 1223.35294
[23] Ozis, T.; Agirseven, D., He’s homotopy perturbation method for a general Riccati equation, International Journal of Modern Physics B, 23, 30, 5683-5693 (2009) · Zbl 1186.37091
[25] Chowdhury, M. S.H.; Hashim, I., Direct solutions of \(n\) th-order IVPs by homotopyperturbation method, International Journal of Computer Mathematics, 87, 4, 756-762 (2010) · Zbl 1192.65091
[26] Darvishi, M. T.; Khani, F.; Hamedi-Nezhad, S.; Ryu, Sang-Wan, New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations, International Journal of Computer Mathematics, 87, 4, 908-919 (2010) · Zbl 1192.65132
[27] Noor, Muhammad Alsam, Some iterative methods for solving nonlinear equations using homotopy perturbation method, International Journal of Computer Mathematics, 87, 1, 141-149 (2010) · Zbl 1182.65079
[28] Odibat, Zaid M., On the approximation of integrals using homotopy perturbation method, International Journal of Computer Mathematics, 87, 1, 53-62 (2010) · Zbl 1182.65047
[29] Yildirim, A., Homotopy perturbation method for the mixed Volterra-Fredholm integral equations, Chaos, Solitons & Fractals, 42, 5, 2760-2764 (2009) · Zbl 1198.65258
[30] Leung, A. Y.T.; Guo, Zhongjin, Homotopy perturbation for conservative Helmholtz-Duffing oscillators, Journal of Sound and Vibration, 325, 1-2, 287-296 (2009)
[31] Saberi-Nadjafi, Jafar; Ghorbani, A., He’s homotopy perturbation method: an effective tool for solving nonlinear integral and integro-differential equations, Computers & Mathematics with Applications, 58, 11-12, 2379-2390 (2009) · Zbl 1189.65173
[32] Chun, Changbum; Jafari, Hossein; Kim, Yong-Il, Numerical method for the wave and nonlinear diffusion equations with the homotopy perturbation method, Computers & Mathematics with Applications, 57, 7, 1226-1231 (2009) · Zbl 1186.65138
[33] Ariel, P. Donald, Extended homotopy perturbation method and computation of flow past a stretching sheet, Computers & Mathematics with Applications, 58, 11-12, 2402-2409 (2009) · Zbl 1189.65156
[34] Biazar, Jafar; Aminikhah, Hossein, Study of convergence of homotopy perturbation method for systems of partial differential equations, Computers & Mathematics with Applications, 58, 11-12, 2221-2230 (2009) · Zbl 1189.65246
[35] Siddiqui, A. M.; Haroon, T.; Irum, S., Torsional flow of third grade fluid using modified homotopy perturbation method, Computers & Mathematics with Applications, 58, 11-12, 2274-2285 (2009) · Zbl 1189.65177
[36] Geng, Fazhan; Cui, Minggen; Zhang, Bo, Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods, Nonlinear Analysis: Real World Applications, 11, 2, 637-644 (2010) · Zbl 1187.34012
[37] Chun, Changbum; Sakthivel, Rathinasamy, Homotopy perturbation technique for solving two-point boundary value problems—comparison with other methods, Computer Physics Communications, 181, 6, 1021-1024 (2010) · Zbl 1216.65094
[38] Duman, M., Asymptotic expansions for the Sturm-Liouville problem by homotopy perturbation method, Applied Mathematics and Computation, 216, 2, 492-496 (2010) · Zbl 1193.34016
[39] Yildirim, A., Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem, Computers & Mathematics with Applications, 57, 4, 612-618 (2009) · Zbl 1165.65398
[40] He, Ji-Huan, An elementary introduction to the homotopy perturbation method, Computers & Mathematics with Applications, 578, 3, 410-412 (2009) · Zbl 1165.65374
[41] Pamuk, S.; Pamuk, N., He’s homotopy perturbation method for continuous population models for single and interacting species, Computers & Mathematics with Applications, 59, 2, 612-621 (2010) · Zbl 1189.65171
[42] Mojahedi, M.; Moghimi Zand, M.; Ahmadian, M. T., Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method, Applied Mathematical Modelling, 34, 4, 1032-1041 (2010) · Zbl 1185.74032
[43] Meena, A.; Rajendran, L., Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations—homotopy perturbation approach, Journal of Electroanalytical Chemistry (2010)
[44] Fathizadeh, M.; Rashidi, F., Boundary layer convective heat transfer with pressure gradient using homotopy perturbation method (HPM) over a flat plate, Chaos, Solitons & Fractals, 42, 4, 2413-2419 (2009) · Zbl 1198.80001
[45] Chowdhury, M. S.H.; Hashim, I., Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations, Chaos, Solitons & Fractals, 39, 4, 1928-1935 (2009) · Zbl 1197.65164
[46] Abbasbandy, S., Application of He’s homotopy perturbation method to functional integral equation, Chaos, Solitons & Fractals, 31, 1243-1247 (2007) · Zbl 1139.65085
[47] Abbasbandy, S., Application of He’s homotopy perturbation method for Laplace transform, Chaos, Solitons & Fractals, 30, 1206-1212 (2006) · Zbl 1142.65417
[48] Siddiqui, A. M.; Ahmed, M.; Ghori, Q. K., Thin film flow of non-Newtonian fluids on a moving belt, Chaos, Solitons & Fractals, 33, 1006-1016 (2007) · Zbl 1129.76009
[49] Ghori, Q. K.; Ahmed, M.; Siddiqui, A. M., Application of homotopy perturbation method to squeezing flow of a Newtonian fluid, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 179-184 (2007)
[50] Tari, H.; Ganji, D. D.; Rostamian, M., Approximate solutions of \(K(2, 2)\), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 203-210 (2007)
[51] Ghorbani, A.; Saberi-Nadjafi, J., He’s homotopy perturbation method for calculating adomian polynomials, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 229-232 (2007) · Zbl 1401.65056
[52] Ariel, P. D.; Hayat, T.; Asghar, S., Homotopy perturbation method and axisymmetric flow over a stretching sheet, International Journal of Nonlinear Sciences and Numerical Simulation, 7, 4, 399-406 (2006)
[53] Ganji, D. D.; Sadighi, A., Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, International Journal of Nonlinear Sciences and Numerical Simulation, 7, 4, 411-418 (2006)
[54] Rafei, M.; Ganji, D. D., Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 7, 3, 321-328 (2006) · Zbl 1160.35517
[55] Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K., Thin film flow of a third grade fluid on a moving belt by He’s homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 7, 1, 7-14 (2006) · Zbl 1187.76622
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.