## MHD mixed convection boundary layer flow towards a stretching vertical surface with constant wall temperature.(English)Zbl 1201.80022

Summary: This work considers a steady two-dimensional magnetohydrodynamic (MHD) flow of a viscous, incompressible and electrically conducting fluid over a stretching vertical surface with constant wall temperature. The external flow and the stretching velocities are assumed to vary with $$\sqrt x$$, where $$x$$ is the distance from the slot where the surface is issued. The transformed boundary layer equations are solved numerically for some values of the related parameters, namely the magnetic parameter $$M$$, the velocity ratio parameter $$\epsilon$$ and the mixed convection or buoyancy parameter $$\lambda$$, while the Prandtl number $$Pr$$ is fixed to unity, using a finite-difference scheme known as the Keller-box method. Both assisting and opposing flow cases are considered. It is found that the magnetic parameter $$M$$ significantly affects the flow and the thermal fields, besides increasing the range of $$\lambda$$ for which the solution exists. Dual solutions are found to exist for some range of the mixed convection parameter.

### MSC:

 80A20 Heat and mass transfer, heat flow (MSC2010) 76R05 Forced convection 76R10 Free convection 76W05 Magnetohydrodynamics and electrohydrodynamics 76M20 Finite difference methods applied to problems in fluid mechanics 80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
Full Text:

### References:

 [1] Pop, I.; Ingham, D. B.: Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media, (2001) [2] Martynenko, O. G.; Khramtsov, P. P.: Free-convective heat transfer: with many photographs of flows and heat exchange, (2005) [3] Sparrow, E. M.; Abraham, J. P.: Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid, Int. J. Heat mass transfer 48, 3047-3056 (2005) · Zbl 1189.76143 · doi:10.1016/j.ijheatmasstransfer.2005.02.028 [4] Blasius, H.: Grenzschichten in flüssigkeiten mit kleiner reibung, Z. math. Phys. 56, 1-37 (1908) · JFM 39.0803.02 [5] Sakiadis, B. C.: Boundary layer behaviour on continuous moving surface, A.i.ch.e.j. 7, 26-28 (1961) [6] Lin, H. T.; Hoh, H. L.: Mixed convection from an isothermal vertical flat plate moving in parallel or reversely to a free stream, Heat mass transfer 32, 441-445 (1997) [7] Ali, M.; Al-Yousef, F.: Laminar mixed convection from a continuously moving vertical surface with suction or injection, Heat mass transfer 33, 301-306 (1998) [8] Chen, C. H.: Mixed convection cooling of a heated continuously stretching surface, Heat mass transfer 36, 79-86 (2000) [9] Ali, M. E.: The buoyancy effects on the boundary layers induced by continuous surfaces stretched with rapidly decreasing velocities, Heat mass transfer 40, 285-291 (2004) [10] Ali, M. E.: The effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with internal heat generation, Int. J. Therm. sci. 46, 157-163 (2007) [11] Vajravelu, K.; Nayfeh, J.: Convective heat transfer at a stretching sheet, Acta mech. 96, 47-54 (1993) · Zbl 0775.76179 · doi:10.1007/BF01340699 [12] Vajravelu, K.; Hadjinicolaou, A.: Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. sci. 35, 1237-1244 (1997) · Zbl 0907.76084 · doi:10.1016/S0020-7225(97)00031-1 [13] Vajravelu, K.: Corrigendum to ”convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream” [Int. J. eng. Sci. 35 (1997) 1237- 1244], Int. J. Eng. sci. 45, 185-186 (2007) · Zbl 0907.76084 [14] Chamkha, A. J.: Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption, Int. J. Heat fluid flow 20, 84-92 (1999) [15] Chamkha, A. J.: Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption, Int. J. Eng. sci. 42, 217-230 (2004) · Zbl 1211.76140 · doi:10.1016/S0020-7225(03)00285-4 [16] Chen, C. H.: Combined heat and mass transfer in MHD free convection from a vertical surface with ohmic heating and viscous dissipation, Int. J. Eng. sci. 42, 699-713 (2004) · Zbl 1211.76141 · doi:10.1016/j.ijengsci.2003.09.002 [17] Xu, H.: An explicit analytic solution for convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. sci. 43, 859-874 (2005) · Zbl 1211.76159 · doi:10.1016/j.ijengsci.2005.01.005 [18] Xu, H.: Erratum to ”an explicit analytic solution for convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream” [Int. J. eng. Sci. 43 (2005) 859 – 874], Int. J. Eng. sci. 45, 716-717 (2007) · Zbl 1213.76257 · doi:10.1016/j.ijengsci.2007.04.011 [19] Cobble, M. H.: Magnetohydrodynamic flow with a pressure gradient and fluid injection, J. eng. Math. 11, 249-256 (1977) · Zbl 0363.76079 · doi:10.1007/BF01535969 [20] Helmy, K. A.: Solution of the boundary layer equation for a power-law fluid in magneto-hydrodynamics, Acta mech. 102, 25-37 (1994) · Zbl 0814.76088 · doi:10.1007/BF01178515 [21] Chiam, T. C.: Hydromagnetic flow over a surface stretching with a power-law velocity, Int. J. Eng. sci 33, 429-435 (1995) · Zbl 0899.76375 · doi:10.1016/0020-7225(94)00066-S [22] Devi, S. P. Anjali; Thiyagarajan, M.: Steady nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature, Heat mass transfer 42, 671-677 (2006) [23] Ishak, A.; Nazar, R.; Pop, I.: Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet, Heat mass transfer 44, 921-927 (2008) · Zbl 1175.76134 [24] Ishak, A.; Nazar, R.; Pop, I.: MHD boundary layer flow due to a moving extensible surface, J. eng. Math. 62, 23-33 (2008) · Zbl 1148.76061 · doi:10.1007/s10665-007-9169-z [25] Chen, C. H.; Vertical, Laminar Mixed Convection Adjacent To: Continuously stretching sheets, Heat mass transfer 33, 471-476 (1998) [26] Keller, H. B.: A new difference scheme for parabolic problems, Numerical solution of partial-differential equations (1970) [27] Cebeci, T.; Bradshaw, P.: Physical and computational aspects of convective heat transfer, (1988) · Zbl 0702.76003 [28] Schneider, W.: A similarity solution for combined forced and free convection flow over a horizontal plate, Int. J. Heat mass transfer 22, 1401-1406 (1979) · Zbl 0414.76066 · doi:10.1016/0017-9310(79)90202-3 [29] Afzal, N.; Hussain, T.: Mixed convection over a horizontal plate, ASME J. Heat transfer 106, 240-241 (1984) [30] Hoog, F. R.; Laminger, B.; Weiss, R.: A numerical study of similarity solutions for combined forced and free convection, Acta mech. 51, 139-149 (1984) · Zbl 0563.76086 · doi:10.1007/BF01177068 [31] Steinrück, H.: Mixed convection over a horizontal plate: self-similar and connecting boundary layer flows, Fluid dyn. Res. 15, 113-127 (1995) · Zbl 1051.76614 · doi:10.1016/0169-5983(94)00052-2 [32] Noshadi, V.; Schneider, W.: A numerical investigation of mixed convection on a horizontal semi-infinite plate, Advances in fluid mechanics and turbomachinery, 87-97 (1998) [33] Weidman, P. D.; Kubitschek, D. G.; Davis, A. M. J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. sci. 44, 730-737 (2006) · Zbl 1213.76064 · doi:10.1016/j.ijengsci.2006.04.005 [34] Mahapatra, T. R.; Gupta, A. S.: Heat transfer in stagnation-point flow towards a stretching sheet, Heat mass transfer 38, 517-521 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.