zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Single machine quadratic penalty function scheduling with deteriorating jobs and group technology. (English) Zbl 1201.90090
Summary: This paper considers single machine scheduling problems with group technology (GT) and deteriorating jobs. We consider the case of jobs whose processing times are a simple linear function of their starting time. The two objectives of scheduling problems are to minimize the weighted sum of squared completion times and the weighted sum of squared waiting times, respectively. We also provide polynomial time algorithms to solve these problems.

90B35Scheduling theory, deterministic
Full Text: DOI
[1] Alidaee, B.; Womer, N. K.: Scheduling with time dependent processing times: review and extensions, J. oper. Res. soc. 50, 711-720 (1999) · Zbl 1054.90542
[2] Cheng, T. C. E.; Ding, Q.; Lin, B. M. T.: A concise survey of scheduling with time dependent processing times, Eur. J. Oper. res. 152, 1-13 (2004) · Zbl 1030.90023 · doi:10.1016/S0377-2217(02)00909-8
[3] Gawiejnowicz, S.: Time-dependent scheduling, (2008) · Zbl 1155.90004
[4] Browne, S.; Yechiali, U.: Scheduling deteriorating jobs on a single processor, Oper. res. 38, 495-498 (1990) · Zbl 0703.90051 · doi:10.1287/opre.38.3.495
[5] Mosheiov, G.: V-shaped policies for scheduling deteriorating jobs, Oper. res. 39, 979-991 (1991) · Zbl 0748.90033 · doi:10.1287/opre.39.6.979
[6] Mosheiov, G.: Scheduling jobs under simple linear deterioration, Comput. oper. Res. 21, 653-659 (1994) · Zbl 0810.90074 · doi:10.1016/0305-0548(94)90080-9
[7] Sundararaghavan, P. S.; Kunnathur, A. S.: Single machine scheduling with start time dependent processing times: some solvable cases, Eur. J. Oper. res. 78, 394-403 (1994) · Zbl 0816.90088 · doi:10.1016/0377-2217(94)90048-5
[8] Wang, J. -B.; Xia, Z. -Q.: Scheduling jobs under decreasing linear deterioration, Inform. process. Lett. 94, 63-69 (2005) · Zbl 1182.68359 · doi:10.1016/j.ipl.2004.12.018
[9] Chen, Z. -L.: Parallel machine scheduling with time dependent processing times, Discrete appl. Math. 70, 81-94 (1996) · Zbl 0855.68032 · doi:10.1016/0166-218X(96)00102-3
[10] Hsieh, Y. C.; Bricker, D. L.: Scheduling linearly deteriorating jobs on multiple machines, Comput. ind. Eng. 32, 727-734 (1997)
[11] Mosheiov, G.: Multi-machine scheduling with linear deterioration, Infor 36, 205-214 (1998)
[12] Mosheiov, G.: Complexity analysis of job-shop scheduling with deteriorating jobs, Discrete appl. Math. 117, 195-209 (2002) · Zbl 1004.68031 · doi:10.1016/S0166-218X(00)00385-1 · http://www.elsevier.com/gej-ng/10/16/23/128/27/41/abstract.html
[13] Kononov, A.; Gawiejnowicz, S.: NP-hard cases in scheduling deteriorating jobs on dedicated machines, J. oper. Res. soc. 52, 708-717 (2001) · Zbl 1181.90120 · doi:10.1057/palgrave.jors.2601117
[14] Wang, J. -B.; Xia, Z. -Q.: Flow shop scheduling with deteriorating jobs under dominating machines, Omega 34, 327-336 (2006) · Zbl 1090.90095
[15] Wang, J. -B.; Xia, Z. -Q.: Flow shop scheduling problems with deteriorating jobs under dominating machines, J. oper. Res. soc. 57, 220-226 (2006) · Zbl 1090.90095 · doi:10.1057/palgrave.jors.2601959
[16] Wang, J. -B.: Flow shop scheduling problems with decreasing linear deterioration under dominant machines, Comput. oper. Res. 34, 2043-2058 (2007) · Zbl 1193.90116 · doi:10.1016/j.cor.2005.08.008
[17] Mitrofanov, S. P.: Scientific principles of group technology, (1966)
[18] Potts, C. N.; Van Wassenhove, L. N.: Integrating scheduling with batching and lot-sizing: a review of algorithms and complexity, J. oper. Res. soc. 43, 395-406 (1992) · Zbl 0756.90050
[19] Ng, C. T.; Cheng, T. C. E.; Janiak, A.; Kovalyov, M. Y.: Group scheduling with controllable setup and processing times: minimizing total weighted completion time, Ann. oper. Res. 133, 147-163 (2005) · Zbl 1119.90020 · doi:10.1007/s10479-004-5030-1
[20] Wu, C. -C.; Shiau, Y. -R.; Lee, W. -C.: Single machine group scheduling problems with deterioration consideration, Comput. oper. Res. 35, 1652-1659 (2008) · Zbl 1211.90094 · doi:10.1016/j.cor.2006.09.008
[21] Wu, C. -C.; Lee, W. -C.: Single machine group scheduling problems with deteriorating setup times and job processing times, Int. J. Prod. econ. 115, 128-133 (2008)
[22] Wang, J. -B.; Lin, L.; Shan, F.: Single machine group scheduling problems with deteriorating jobs, Int. J. Adv. manuf. Technol. 39, 808-812 (2008)
[23] Wang, J. -B.; Gao, W. -J.; Wang, L. -Y.; Wang, D.: Single machine group scheduling with general linear deterioration to minimize the makespan, Int. J. Adv. manuf. Technol. 43, 146-150 (2009)
[24] Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. discrete math. 5, 287-326 (1979) · Zbl 0411.90044
[25] Townsend, W.: The single machine problem with quadratic penalty function of completion times: a branch-and-bound solution, Manag. sci. 24, 530-534 (1978) · Zbl 0371.90065 · doi:10.1287/mnsc.24.5.530
[26] Szwarc, W.; Posner, M. E.; Liu, J. J.: The single machine problem with a quadratic cost function of completion times, Manag. sci. 34, 1480-1488 (1988) · Zbl 0663.90042 · doi:10.1287/mnsc.34.12.1480
[27] Szwarc, W.; Mukhopadhyay, S. K.: Minimizing a quadratic cost function of waiting times in single machine scheduling, J. oper. Res. soc. 46, 753-761 (1995) · Zbl 0833.90072