zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The role of depth and $1/f$ dynamics in perceiving reversible figures. (English) Zbl 1201.91171
Summary: When confronted with a reversible figure, such as the Necker Cube, viewers experience a spontaneously changing percept. We assess the dynamic of how the human visual system resolves perceptual ambiguity in stimuli that offer multiple interpretations. Subjects observed the Necker cube for one of three viewing durations during which they pressed a key each time they perceived a change in the orientation of the cube. Manipulations of binocular disparity served as a parameter to control perceptual stability. Low-depth conditions yielded more perceptual reversals than high-depth conditions. A Fourier analysis performed on the time series of reversals show $1/f$ (pink) noise was evident in their power spectra. These results together with theoretical models of complex systems suggest that depth information may guide our perceptual system into a self-organized state to assist us in resolving ambiguous information. Moreover, slopes of the spectra were steeper in high-depth and brief viewing conditions, suggesting that the visual system relies more on previous perceptual states and filters more white noise in these conditions.

91E10Cognitive psychology
Full Text: DOI