×

Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. (English) Zbl 1201.92026

Summary: Adaptive and high resolution numerical discretization techniques are demonstrated for solving optimal control of the monodomain equations in cardiac electrophysiology. A monodomain model, which is a well established model for describing the wave propagation of the action potential in the cardiac tissue, will be employed for the numerical experiments. The optimal control problem is considered as a PDE constrained optimization problem. We present an optimal control formulation for the monodomain equations with an extra-cellular current as the control variable which must be determined in such a way that excitations of the transmembrane voltage are damped in an optimal manner.
The focus of this work is on the development and implementation of an efficient numerical technique to solve an optimal control problem related to a reaction-diffusions system arising in cardiac electrophysiology. Specifically a Newton-type method for the monodomain model is developed. The numerical treatment is enhanced by using a second order time stepping method and adaptive grid refinement techniques. The numerical results clearly show that super-linear convergence is achieved in practice.

MSC:

92C30 Physiology (general)
92C05 Biophysics
49N90 Applications of optimal control and differential games
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
35K57 Reaction-diffusion equations
65K10 Numerical optimization and variational techniques

Software:

DUNE
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in dune, Computing, 82, 121-138 (2008) · Zbl 1151.65088
[2] Becker, R.; Kapp, H.; Rannacher, R., Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39, 113-132 (2000) · Zbl 0967.65080
[3] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1-102 (2001) · Zbl 1105.65349
[4] Bourgault, Y.; Coudiére, Y.; Pierre, C., Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, 10, 458-482 (2009) · Zbl 1154.35370
[5] Cherry, E. M.; Greenside, H. S.; Henriquez, C. S., A space-time adaptive method for simulating complex cardiac dynamics, Phys. Rev. Lett., 84, 1343-1346 (2000)
[6] Dede’, L.; Quarteroni, A., Optimal control and numerical adaptivity for advection-diffusion equations, M2AN, 39, 1019-1040 (2005) · Zbl 1075.49014
[7] Franzone, P. C.; Deuflhard, P.; Erdmann, B.; Lang, J.; Pavarino, L. F., Adaptivity in space and time for reaction-diffusion systems in electrocardiology, SIAM Journal on Numerical Analysis, 28, 942-962 (2006) · Zbl 1114.65110
[8] Henriquez, C. S., Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., 21, 1, 77 (1993)
[9] Hinze, M.; Kunisch, K., Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim., 40, 925-946 (2001) · Zbl 1012.49026
[10] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints (2008), Springer · Zbl 1167.49001
[11] Lang, J., Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems, Lecture Notes in Computational Science and Engineering, vol. 16 (2001), Springer-Verlag: Springer-Verlag Berlin
[12] Moore, P. K., An adaptive finite element method for parabolic differential systems: Some algorithmic considerations in solving in three space dimensions, SIAM J. Sci. Comput., 21, 1567-1586 (1999) · Zbl 0969.65090
[14] Nagaiah, C.; Kunisch, K.; Plank, G., Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Comput. Optim. Appl., 1-30 (2009)
[15] Nielsen, B. F.; Ruud, T. S.; Lines, G. T.; Tveito, A., Optimal monodomain approximations of the bidomain equations, Appl. Math. Comput., 184, 276-290 (2007) · Zbl 1115.92005
[16] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer Verlag: Springer Verlag New York · Zbl 1104.65059
[17] Plank, G.; Liebmann, M.; dos Santos, R. W.; Vigmond, E.; Haase, G., Algebraic multigrid preconditioner for the cardiac bidomain model, IEEE Trans. Biomed. Eng., 54, 4, 585-596 (2007)
[18] Plonsey, R., Bioelectric sources arising in excitable fibers (ALZA lecture), Ann. Biomed. Eng., 16, 519-546 (1988)
[19] Potse, M.; Dube, B.; Richer, J.; Vinet, A.; Gulrajani, R., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Eng., 53, 2425-2435 (2006)
[20] Rogers, J. M.; McCulloch, A. D., A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Eng., 41, 743-757 (1994)
[21] Trangenstein, J. A.; Kim, C., Operator splitting and adaptive mesh refinement for the luo-rudy i model, J. Comput. Phys., 196, 645-679 (2004) · Zbl 1056.92014
[23] Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (1996), Wiley & Teubner · Zbl 0853.65108
[24] Vigmond, E. J.; Weber dos Santos, R.; Prassl, A. J.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol., 96, 3-18 (2008)
[25] Weber dos Santos, R.; Plank, G.; Bauer, S.; Vigmond, E., Parallel multigrid preconditioner for the cardiac bidomain model, IEEE Trans. Biomed. Eng., 51, 1960-1968 (2004)
[26] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Num. Meth. Eng., 24, 337-357 (1987) · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.