×

Coordination and collision avoidance for Lagrangian systems with disturbances. (English) Zbl 1201.93008

Summary: We address the problem of cooperation and collision avoidance for Lagrangian systems with input disturbances. We design control laws that guarantee cooperation as well as collision-free maneuvers. We show, using a two-step proof, that the avoidance part of the control laws guarantees safety of the agents independently of the coordinating part. Then, we establish an ultimate bound on the region to which all the agents converge to. The obtained theoretical results are illustrated through numerical examples.

MSC:

93A14 Decentralized systems
93C15 Control/observation systems governed by ordinary differential equations
34H05 Control problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bertsikas, D. P.; Tsitsiklis, J. N., Comments on “coordination of groups of mobile autonomous agents using nearest neighbor rules”, IEEE Transactions on Automatic Control, 52, 5, 968-969 (2007) · Zbl 1366.93113
[6] Corless, M.; Leitmann, G., Adaptive controllers for avoidance or evasion in an uncertain environment: some examples, Computers and Mathematics with Applications, 18, 161-170 (1989) · Zbl 0699.90106
[7] Corless, M.; Leitmann, G.; Skowronski, J., Adaptive control for avoidance or evasion in an uncertain environment, Computers and Mathematics with Applications, 13, 1-11 (1987) · Zbl 0633.90108
[8] Crandall, M. G.; Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations, Transactions of American Mathematical Society, 277, 1-42 (1983) · Zbl 0599.35024
[9] Dimarogonas, D. V.; Loizou, S. G.; Kyriakopoulos, K. J.; Zavlanos, M. M., A feedback stabilization and collision avoidance scheme for multiple independent non-point agents, Automatica, 42, 229-243 (2006) · Zbl 1099.93029
[12] Getz, W. M.; Leitmann, G., Qualitative differential games with two targets, Journal of Mathematical Analysis and Applications, 68, 421-430 (1979), Apr. · Zbl 0497.90097
[14] Hokayem, P. F.; Stipanović, D. M.; Spong, M. W., Semiautonomous control of multiple networked Lagrangian systems, International Journal of Robust and Nonlinear Control, 19, 2040-2055 (2009) · Zbl 1192.93012
[15] Hu, J.; Prandini, M.; Sastry, S., Optimal coordinated motions of multiple agents moving on a plane, SIAM Journal of Control and Optimization, 42, 637-668 (2003) · Zbl 1046.65051
[18] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 48, 988-1001 (2003), June · Zbl 1364.93514
[19] Khalil, H., Nonlinear Systems (2002), Prentice Hall: Prentice Hall Hoboken, New Jersey · Zbl 1003.34002
[20] Kim, Y.; Mesbahi, M.; Hadaegh, F. Y., Multiple-spacecraft reconfiguration through collision avoidance, bouncing, and stalemate, Journal of Optimization Theory and Applications, 122, 323-343 (2004) · Zbl 1092.70020
[21] Koditschek, D. E.; Rimon, E., Robot navigation functions on manifolds with boundary, Advances in Applied Mathematics, 11, 412-442 (1990) · Zbl 0727.58003
[23] Leitmann, G., Guaranteed avoidance strategies, Journal of Optimization Theory and Applications, 32, 569-576 (1980) · Zbl 0419.90096
[24] Leitmann, G.; Skowronski, J., Avoidance control, Journal of Optimization Theory and Applications, 23, 581-591 (1977) · Zbl 0346.93025
[25] Leitmann, G.; Skowronski, J., A note on avoidance control, Optimal Control Applications and Methods, 4, 335-342 (1983) · Zbl 0528.49004
[26] Luenberger, D. G., Linear and Nonlinear Programming (2003), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA · Zbl 0241.90052
[27] Martínez, S.; Bullo, F.; Cortés, J.; Frazzoli, E., On synchronous robotic networks - Part I: models, tasks and complexity, IEEE Transactions on Automatic Control, 52, 2199-2213 (2007) · Zbl 1366.93388
[28] Martínez, S.; Bullo, F.; Cortés, J.; Frazzoli, E., On synchronous robotic networks - Part II: time complexity of rendezvous and deployment algorithms, IEEE Transactions on Automatic Control, 52, 2214-2226 (2007) · Zbl 1366.93389
[29] Mitchell, I.; Bayen, A. M.; Tomlin, C. J., A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games, IEEE Transactions on Automatic Control, 50, 947-957 (2005) · Zbl 1366.91022
[30] Murray, R. M., Recent research in cooperative control of multi-vehicle systems, ASME Journal of Dynamic Systems, Measurement, and Control, 129, 571-583 (2007)
[31] Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Transactions On Automatic Control, 51, 401-420 (2006) · Zbl 1366.93391
[32] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138
[33] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79, 12-49 (1988) · Zbl 0659.65132
[34] Rimon, E.; Koditschek, D. E., The construction of analytic diffeomorphisms for exact robot navigation on star worlds, Transactions of the American Mathematical Society, 327, 71-116 (1991) · Zbl 0744.70009
[35] Rimon, E.; Koditschek, D. E., Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, 8, 501-518 (1992)
[36] Sethian, J. A., Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science (2002), Cambridge University Press · Zbl 0973.76003
[37] Spong, M. W.; Hutchinson, S.; Vidyasagar, M., Robot Modeling and Control (2006), John Wiley: John Wiley New Jersey
[39] Stipanović, D. M.; Hokayem, P. F.; Spong, M. W.; S˘iljak, D. D., Avoidance control for multi-agent systems, ASME Journal of Dynamic Systems, Measurement, and Control, 129, 5, 699-707 (2007)
[40] Stipanović, D. M.; Hwang, I.; Tomlin, C. J., Computation of an over-approximation of the backward reachable set using subsystem level set functions, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 11, 399-411 (2004) · Zbl 1054.93010
[41] Stipanović, D. M.; Inalhan, G.; Teo, R.; Tomlin, C. J., Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica, 40, 1285-1296 (2004) · Zbl 1073.93556
[43] Tanner, H. G.; Pappas, G. J.; Kumar, V., Leader-to-formation stability, IEEE Transactions on Robotics and Automation, 20, 3, 433-455 (2004)
[44] Tomlin, C. J.; Lygeros, J.; Sastry, S., A game theoretic approach to controller design for hybrid systems, Proceedings of the IEEE, 88, 949-970 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.