zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Near optimal control for a class of stochastic hybrid systems. (English) Zbl 1201.93133
Summary: To address a computationally intractable optimal control problem for a class of stochastic hybrid systems, this paper proposes a near optimal state feedback control scheme, which is constructed by using a statistical prediction method based on an approximate numerical solution that samples over the entire state space. A numerical example illustrates the potential of the approach.

93E20Optimal stochastic control (systems)
93C30Control systems governed by other functional relations
60H10Stochastic ordinary differential equations
Full Text: DOI
[1] Baillo, A.; Cuevas, A.; Justel, A.: Set estimation and nonparametric detection, The canadian journal of statistics 28, No. 4, 765-782 (2000) · Zbl 1057.62026 · doi:10.2307/3315915
[2] Bensoussan, A.; Menaldi, J. L.: Stochastic hybrid control, Journal of mathematical analysis and applications 249, 261-288 (2000) · Zbl 0967.93097 · doi:10.1006/jmaa.2000.7102
[3] Cassandras, C. G.; Lygeros, J.: Stochastic hybrid systems, (2007) · Zbl 1123.93004
[4] Ghosh, M. K.; Arapostathis, A.; Marcus, S. I.: Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM journal on control and optimization 31, No. 5, 1183-1204 (1993) · Zbl 0785.93092 · doi:10.1137/0331056
[5] Kushner, H. J.; Dupuis, P. G.: Numerical methods for stochastic control problems in continuous time, (2002) · Zbl 0968.93005
[6] Mao, X.: Stability of stochastic differential equations with Markovian switching, Stochastic processes and their applications 79, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[7] Sethi, S. P.; Zhang, Q.: Hierarchical decision making in stochastic manufacturing systems, (1994) · Zbl 0923.90002
[8] Song, Q. S.; Yin, G.; Zhang, Z.: Numerical methods for controlled regime-switching diffusions and regime-switching jump diffusions, Automatica 42, 1147-1157 (2006) · Zbl 1117.93370 · doi:10.1016/j.automatica.2006.03.016
[9] Yan, H.; Zhang, Q.: A numerical method in optimal production and setup scheduling of stochastic manufacturing systems, IEEE transactions on automatic control 42, No. 10, 1452-1455 (1997) · Zbl 0892.90094 · doi:10.1109/9.633837
[10] Yong, J.: Systems governed by ordinary differential equations with continuous, switching and impulse controls, Applied mathematics and optimization 20, 223-235 (1989) · Zbl 0691.49031 · doi:10.1007/BF01447655
[11] Zhou, X. Y.: Stochastic near-optimal controls: necessary and sufficient conditions for near-optimality, SIAM journal on control and optimization 36, No. 3, 927-947 (1998) · Zbl 0914.93073 · doi:10.1137/S0363012996302664