Error estimates from noise samples for iterative algorithm in shift-invariant signal spaces. (English) Zbl 1201.94063

Summary: We consider error estimates of iterative algorithm in shift-invariant signal spaces. For the classical sampling and reconstruction algorithm, error estimate from its samples corrupted by white noises are widely studied, but the error analysis of noise with time jitter and iterative noise has not been given as much attention. In this paper, three types of error estimates are studied. In detail, we obtain the error estimate for reconstructing a signal from its noise samples, noise samples with time jitter, and iterative noise.


94A20 Sampling theory in information and communication theory
94A05 Communication theory
Full Text: DOI EuDML


[1] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the IEEE, vol. 37, pp. 10-21, 1949.
[2] A. Aldroubi, C. Leonetti, and Q. Sun, “Error analysis of frame reconstruction from noisy samples,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2311-2325, 2008. · Zbl 1390.94055 · doi:10.1109/TSP.2007.913138
[3] A. Aldroubi and K. Gröchenig, “Nonuniform sampling and reconstruction in shift-invariant spaces,” SIAM Review, vol. 43, no. 4, pp. 585-620, 2001. · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[4] W. Chen, B. Han, and R.-Q. Jia, “Estimate of aliasing error for non-smooth signals prefiltered by quasi-projections into shift-invariant spaces,” IEEE Transactions on Signal Processing, vol. 53, no. 5, pp. 1927-1933, 2005. · Zbl 1370.94368 · doi:10.1109/TSP.2005.845490
[5] B. Liu and W. Sun, “Determining averaging functions in average sampling,” IEEE Signal Processing Letters, vol. 14, no. 4, pp. 244-246, 2007. · doi:10.1109/LSP.2006.884894
[6] S. Luo, “Error estimation for non-uniform sampling in shift invariant space,” Applicable Analysis, vol. 86, no. 4, pp. 483-496, 2007. · Zbl 1135.94003 · doi:10.1080/00036810701259236
[7] S. Smale and D.-X. Zhou, “Shannon sampling and function reconstruction from point values,” American Mathematical Society. Bulletin. New Series, vol. 41, no. 3, pp. 279-305, 2004. · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0
[8] S. Smale and D.-X. Zhou, “Shannon sampling. II. Connections to learning theory,” Applied and Computational Harmonic Analysis, vol. 19, no. 3, pp. 285-302, 2005. · Zbl 1107.94008 · doi:10.1016/j.acha.2005.03.001
[9] W. Sun and X. Zhou, “Sampling theorem for wavelet subspaces: error estimate and irregular sampling,” IEEE Transactions on Signal Processing, vol. 48, no. 1, pp. 223-226, 2000. · Zbl 1011.94008 · doi:10.1109/78.815492
[10] M. Unser, “Sampling-50 years after Shannon,” Proceedings of the IEEE, vol. 88, no. 4, pp. 569-587, 2000. · doi:10.1109/5.843002
[11] J. Xian and S. Li, “Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications,” Applied and Computational Harmonic Analysis, vol. 23, no. 2, pp. 171-180, 2007. · Zbl 1135.42013 · doi:10.1016/j.acha.2006.10.004
[12] J. Xian, S.-P. Luo, and W. Lin, “Weighted sampling and signal reconstruction in spline subspaces,” Signal Processing, vol. 86, no. 2, pp. 331-340, 2006. · Zbl 1163.94407 · doi:10.1016/j.sigpro.2005.05.013
[13] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Signal reconstruction errors in jittered sampling,” IEEE Transactions on Signal Processing, vol. 57, no. 12, pp. 4711-4718, 2009. · Zbl 1392.94690 · doi:10.1109/TSP.2009.2027404
[14] M. Z. Nashed and Q. Sun, “Sampling and reconstruction of signals in a reproducing kernel subspace of Lp(Rd),” Journal of Functional Analysis, vol. 258, no. 7, pp. 2422-2452, 2010. · Zbl 1201.42022 · doi:10.1016/j.jfa.2009.12.012
[15] Z. Song, W. Sun, X. Zhou, and Z. Hou, “An average sampling theorem for bandlimited stochastic processes,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4798-4800, 2007. · Zbl 1325.94055 · doi:10.1109/TIT.2007.909136
[16] W. Sun and X. Zhou, “Average sampling in spline subspaces,” Applied Mathematics Letters, vol. 15, no. 2, pp. 233-237, 2002. · Zbl 0998.94518 · doi:10.1016/S0893-9659(01)00123-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.