×

Image partition regularity near zero. (English) Zbl 1202.05146

Summary: Many of the classical results of Ramsey Theory are naturally stated in terms of image partition regularity of matrices. Many characterizations are known of image partition regularity over \(\mathbb N\) and other subsemigroups of \((\mathbb R,+)\). We study several notions of image partition regularity near zero for both finite and infinite matrices, and establish relationships which must hold among these notions.

MSC:

05D10 Ramsey theory
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] De, D.; Hindman, N.; Strauss, D., A new and stronger central sets theorem, Fund. Math., 199, 155-175 (2008) · Zbl 1148.05052
[2] Deuber, W.; Hindman, N.; Leader, I.; Lefmann, H., Infinite partition regular matrices, Combinatorica, 15, 333-355 (1995) · Zbl 0831.05060
[3] Erdős, P.; Rado, R., A partition calculus in set theory, Bull. Amer. Math. Soc., 62, 427-489 (1956) · Zbl 0071.05105
[4] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorical Number Theory (1981), Princeton University Press: Princeton University Press Princeton · Zbl 0459.28023
[5] Galvin, F., (On a partition theorem of Baumgartner and Hajnal. On a partition theorem of Baumgartner and Hajnal, Colloq. Math. Soc. János Bolyai, vol. 10 (1975), North Holland: North Holland Amsterdam), 711-729 · Zbl 0313.04003
[6] Graham, R.; Rothschild, B.; Spencer, J., Ramsey Theory (1990), Wiley: Wiley New York
[7] Hindman, N., Partition regularity of matrices, (Landman, B.; Nathanson, M.; Nesetril, J.; Nowakowski, R.; Pomerance, C., Combinatorial Number Theory (2007), deGruyter: deGruyter Berlin), 265-298 · Zbl 1125.05105
[8] Hindman, N.; Leader, I., Image partition regularity of matrices, Combin. Probab. Comput., 2, 437-463 (1993) · Zbl 0793.05139
[9] Hindman, N.; Leader, I., The semigroup of ultrafilters near 0, Semigroup Forum, 59, 33-55 (1999) · Zbl 0942.22003
[10] Hindman, N.; Leader, I.; Strauss, D., Image partition regular matrices — bounded solutions and preservation of largeness, Discrete Math., 242, 115-144 (2002) · Zbl 1007.05095
[11] Hindman, N.; Leader, I.; Strauss, D., Infinite partition regular matrices — solutions in central sets, Trans. Amer. Math. Soc., 355, 1213-1235 (2003) · Zbl 1006.05058
[12] Hindman, N.; Strauss, D., Algebra in the Stone-Čech Compactification: Theory and Applications (1998), de Gruyter: de Gruyter Berlin · Zbl 0918.22001
[13] Hindman, N.; Strauss, D., Image partition regularity over the integers, rationals, and reals, New York J. Math., 11, 519-538 (2005) · Zbl 1078.05082
[14] Milliken, K., Ramsey’s Theorem with sums or unions, J. Combin. Theory Ser. A, 18, 276-290 (1975) · Zbl 0323.05001
[15] Rado, R., Studien zur Kombinatorik, Math. Zeit., 36, 242-280 (1933) · Zbl 0006.14603
[16] Rado, R., Note on combinatorial analysis, Proc. London Math. Soc., 48, 122-160 (1943) · Zbl 0028.33801
[17] Schur, I., Über die Kongruenz \(x^m + y^m = z^m(mod p)\), Jahresbericht der Deutschen Math.-Verein., 25, 114-117 (1916) · JFM 46.0193.02
[18] Taylor, A., A canonical partition relation for finite subsets of \(\omega \), J. Combin. Theory Ser. A, 21, 137-146 (1976) · Zbl 0341.05010
[19] van der Waerden, B., Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde, 19, 212-216 (1927) · JFM 53.0073.12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.