×

Localization of \(\mathfrak g\)-modules on the affine Grassmannian. (English) Zbl 1202.17009

This work is in the context of the local geometric Langlands correspondence. A general framework and conjectures for this correspondence were proposed by the authors in [“Local geometric Langlands correspondence and affine Kac-Moody algebras”, Algebraic geometry and number theory, Prog. Math. 253, 69–260 (2006; Zbl 1184.17011)].
Let \(G\) be a simple complex algebraic group and \(\mathfrak{g}\) the Lie algebra of \(G\). Let \(\hat{\mathfrak{g}}\) be the affine Kac-Moody algebra, the universal central extension of the formal loop algebra \(\mathfrak{g}((t))\). Representations of \(\hat{\mathfrak{g}}\) have a parameter, an invariant bilinear form on \(\mathfrak{g}\), which is called the level. Representations corresponding to the bilinear form which is equal to minus one half of the Killing form are called representations of critical level. The authors consider the category of modules over the affine Kac-Moody algebra \(\hat{\mathfrak{g}}\) of critical level with regular central character. In (loc.cit.) they conjectured that this category is equivalent to the category of Hecke eigen-D-modules on the affine Grassmannian \(G((t))/G[[t]]\). In this paper the authors prove this conjecture for the corresponding \(I^0\) equivariant categories, where \(I^0\) is the radical of the Iwahori subgroup of \(G((t))\).

MSC:

17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
11G45 Geometric class field theory
22E67 Loop groups and related constructions, group-theoretic treatment

Citations:

Zbl 1184.17011

References:

[1] S. Arkhipov and D. Gaitsgory, ”Another realization of the category of modules over the small quantum group,” Adv. Math., vol. 173, iss. 1, pp. 114-143, 2003. · Zbl 1025.17004 · doi:10.1016/S0001-8708(02)00016-6
[2] S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and I. Mirk-ović, ”Modules over the small quantum group and semi-infinite flag manifold,” Transform. Groups, vol. 10, iss. 3-4, pp. 279-362, 2005. · Zbl 1122.17007 · doi:10.1007/s00031-005-0400-6
[3] S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, ”Quantum groups, the loop Grassmannian, and the Springer resolution,” J. Amer. Math. Soc., vol. 17, iss. 3, pp. 595-678, 2004. · Zbl 1061.17013 · doi:10.1090/S0894-0347-04-00454-0
[4] A. Beilinson, ”Langlands parameters for Heisenberg modules,” in Studies in Lie theory, Boston, MA: Birkhäuser, 2006, pp. 51-60. · Zbl 1195.17020 · doi:10.1007/0-8176-4478-4_4
[5] A. Beuilinson and J. Bernstein, ”Localisation de \(g\)-modules,” C. R. Acad. Sci. Paris Sér. I Math., vol. 292, iss. 1, pp. 15-18, 1981. · Zbl 0476.14019
[6] J. -L. Brylinski and M. Kashiwara, ”Kazhdan-Lusztig conjecture and holonomic systems,” Invent. Math., vol. 64, iss. 3, pp. 387-410, 1981. · Zbl 0473.22009 · doi:10.1007/BF01389272
[7] A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves. · Zbl 0864.14007
[8] V. V. Deodhar, O. Gabber, and V. Kac, ”Structure of some categories of representations of infinite-dimensional Lie algebras,” Adv. in Math., vol. 45, iss. 1, pp. 92-116, 1982. · Zbl 0491.17008 · doi:10.1016/S0001-8708(82)80014-5
[9] B. Feigin and E. Frenkel, ”Affine Kac-Moody algebras at the critical level and Gel’fand-Dikiĭalgebras,” in Infinite analysis, Part A, B (Kyoto, 1991), World Sci. Publ., River Edge, NJ, 1992, pp. 197-215. · Zbl 0925.17022 · doi:10.1142/S0217751X92003781
[10] E. Frenkel, ”Wakimoto modules, opers and the center at the critical level,” Adv. Math., vol. 195, iss. 2, pp. 297-404, 2005. · Zbl 1129.17014 · doi:10.1016/j.aim.2004.08.002
[11] E. Frenkel and D. Gaitsgory, ”\(D\)-modules on the affine Grassmannian and representations of affine Kac-Moody algebras,” Duke Math. J., vol. 125, iss. 2, pp. 279-327, 2004. · Zbl 1107.17013 · doi:10.1215/S0012-7094-04-12524-2
[12] E. Frenkel and D. Gaitsgory, ”Local geometric Langlands correspondence and affine Kac-Moody algebras,” in Algebraic geometry and number theory, Boston, MA: Birkhäuser, 2006, pp. 69-260. · Zbl 1184.17011 · doi:10.1007/978-0-8176-4532-8_3
[13] D. Gaitsgory, The notion of category over an algebraic stack, preprint. · Zbl 1423.11118
[14] D. Kazhdan and G. Lusztig, ”Tensor structures arising from affine Lie algebras. I, II,” J. Amer. Math. Soc., vol. 6, pp. 905-947; 949, 1993. · Zbl 0786.17017 · doi:10.2307/2152745
[15] D. Kazhdan and G. Lusztig, ”Tensor structures arising from affine Lie algebras. III, IV,” J. Amer. Math. Soc., vol. 7, pp. 335-381; 383, 1994. · Zbl 0802.17007 · doi:10.2307/2152762
[16] I. Mirković and K. Vilonen, ”Geometric Langlands duality and representations of algebraic groups over commutative rings,” Ann. of Math., vol. 166, pp. 95-143, 2007. · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[17] M. Kashiwara and T. Tanisaki, ”Kazhdan-Lusztig conjecture for affine Lie algebras with negative level,” Duke Math. J., vol. 77, iss. 1, pp. 21-62, 1995. · Zbl 0829.17020 · doi:10.1215/S0012-7094-95-07702-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.