×

Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. (English) Zbl 1202.26017

Summary: We shall discuss the properties of the well-known Mittag-Leffler function, and consider the existence and uniqueness of the solution of the periodic boundary value problem for a fractional differential equation involving a Riemann-Liouville fractional derivative by using the monotone iterative method.

MSC:

26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34B99 Boundary value problems for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Amsterdam · Zbl 1092.45003
[2] Pitcher, E.; Sewell, W.E., Existence theorems for solutions of differential equations of non-integral order, Bull. amer. math. soc., 44, 2, 100-107, (1938) · Zbl 0018.30701
[3] Al-Bassam, M.A., Some existence theorems on differential equations of generalized order, J. reine angew. math., 218, 1, 70-78, (1965) · Zbl 0156.30804
[4] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. math. anal. appl., 204, 2, 609-625, (1996) · Zbl 0881.34005
[5] Kilbas, A.A.; Marzan, S.A., Nonlinear differential equations in weighted spaces of continuous functions, Dokl. nats. akad. nauk belarusi, 47, 1, 29-35, (2003), (in Russian) · Zbl 1204.26009
[6] Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J., Linear fractional differential equations with variable coefficients, Appl. math. lett., 21, 892-897, (2008) · Zbl 1152.34305
[7] Ibrahim, Rabha W.; Darus, Maslina, Subordination and superordination for univalent solutions for fractional differential equations, J. math. anal. appl., 345, 871-879, (2008) · Zbl 1147.30009
[8] Zhang, Shuqin, The existence of a positive solution for a nonlinear fractional differential equation, J. math. anal. appl., 252, 804-812, (2000) · Zbl 0972.34004
[9] Zhang, Shuqin, Positive solution for some class of nonlinear fractional differential equation, J. math. anal. appl., 278, 1, 136-148, (2003) · Zbl 1026.34008
[10] Devi, J.V.; Lakshmikantham, V., Nonsmooth analysis and fractional differential equations, Nonlinear anal. IMA, 70, 12, 4151-4157, (2009) · Zbl 1237.49022
[11] Kosmatov, N., Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear anal. TMA, 70, 7, 2521-2529, (2009) · Zbl 1169.34302
[12] Shuqin, Zhang, Monotone iterative method for initial value problem involving riemann – liouville fractional derivatives, Nonlinear anal., 71, 2087-2093, (2009) · Zbl 1172.26307
[13] Belmekki, Mohammed; Nieto, Juan J.; Rodríguez-López, Rosana, Existence of periodic solutions for a nonlinear fractional differential equation, Boundary value problems, 2009, (2009), Art. ID. 324561 · Zbl 1181.34006
[14] Nieto, J.J., Maximum principles for fractional differential equations derived from mittag – leffler functions, Appl. math. lett., 23, 10, 1248-1251, (2010) · Zbl 1202.34019
[15] Chang, Y.-K.; Nieto, J.J., Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. modelling, 49, 605-609, (2009) · Zbl 1165.34313
[16] Bonilla, B.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J., Fractional differential equations as alternative models to nonlinear differential equations, Appl. math. comput., 187, 79-88, (2007) · Zbl 1120.34323
[17] Jumarie, G., An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear anal. RWA, 11, 535-546, (2010) · Zbl 1195.37054
[18] Ahmad, B.; Nieto, J.J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. appl., 58, 1838-1843, (2009) · Zbl 1205.34003
[19] Agarwal, Ravi P.; Lakshmikantham, V.; Nieto, Juan J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear anal., 72, 6, 2859-2862, (2010) · Zbl 1188.34005
[20] Luchko, Y.F.; Rivero, M.; Trujillo, J.J.; Velasco, M.P., Fractional models, non-locality, and complex systems, Comput. math. appl., 59, 1048-1056, (2010) · Zbl 1189.37095
[21] Wei, Zhongli; Li, Qingdong; Che, Junling, Initial value problems for fractional differential equations involving riemann – liouville sequential fractional derivative, J. math. anal. appl., 367, 1, 260-272, (2010) · Zbl 1191.34008
[22] Ladde, G.S.; Lakshmikantham, V.; Vatsala, A.S., Monotone iterative techniques for nonlinear differential equations, (1985), Pitman Pub. Co. Boston · Zbl 0658.35003
[23] Ahmad, B.; Sivasundaram, S., Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation, Appl. math. comput., 197, 515-524, (2008) · Zbl 1142.34049
[24] Nieto, J.J.; Rodríguez-López, R., Monotone method for first-order functional differential equations, Comput. math. appl., 52, 471-484, (2006) · Zbl 1140.34406
[25] Jiang, D.; Nieto, J.J.; Zuo, W., On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations, J. math. anal. appl., 289, 691-699, (2004) · Zbl 1134.34322
[26] Nieto, J.J.; Rodríguez-López, R., Boundary value problems for a class of impulsive functional equations, Comput. math. appl., 55, 2715-2731, (2008) · Zbl 1142.34362
[27] Lakshmikanthan, V.; Vatsala, A.S., General uniqueness and monotone iterative technique for fractional differential equations, Appl. math. lett., 21, 828-834, (2008) · Zbl 1161.34031
[28] Lakshmikanthan, V.; Vatsala, A.S., Basic theory of fractional differential equations, Nonlinear anal. TMA, 69, 8, 2677-2682, (2008) · Zbl 1161.34001
[29] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.