zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On an Iyengar-type inequality involving quadratures in $n$ knots. (English) Zbl 1202.26030
Summary: We give an Iyengar-type inequality involving quadratures in $n$ knots, where $n$ is an arbitrary natural number.

26D10Inequalities involving derivatives, differential and integral operators
26D15Inequalities for sums, series and integrals of real functions
Full Text: DOI
[1] Agarwal, R. P.; Čuljak, V.; Pečarić, J.: Some integral inequalities involving bounded higher order derivatives, Math. comput. Model. 28, 51-57 (1998) · Zbl 0992.26011 · doi:10.1016/S0895-7177(98)00098-3
[2] Anastassiou, G. A.; Dragomir, S. S.: On some estimates of the remainder in Taylor’s formula, J. math. Anal. appl. 263, 246-263 (2001) · Zbl 1006.26017 · doi:10.1006/jmaa.2001.7622
[3] Cheng, X. L.: The iyengar type inequality, Appl. math. Lett. 14, 975-978 (2001) · Zbl 0987.26008 · doi:10.1016/S0893-9659(01)00074-X
[4] Elezović, N.; Pečarić, J.: Steffensen’s inequality and estimates of error in trapezoidal rule, Appl. math. Lett. 11, 63-69 (1998) · Zbl 0938.26013 · doi:10.1016/S0893-9659(98)00104-9
[5] Franjić, I.; Pečarić, J.; Perić, I.: Note on an iyengar type inequality, Appl. math. Lett. 19, 657-660 (2006) · Zbl 1136.26005 · doi:10.1016/j.aml.2005.08.018
[6] Iyengar, K. S. K.: Note on an inequality, Math. student 6, 75-76 (1938) · Zbl 64.0209.02