×

Sandwich-type theorems for multivalent functions associated with the Srivastava-Attiya operator. (English) Zbl 1202.30017

Summary: We investigate some subordination- and superordination-preserving properties for certain classes of multivalent analytic functions in the open unit disk, which are associated with such multiplier transformations as the Srivastava-Attiya operator. Various sandwich-type theorems for functions belonging to these classes are also obtained.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bernardi, S.D., Convex and starlike univalent functions, Trans. amer. math. soc., 135, 429-446, (1969) · Zbl 0172.09703
[2] Bulboacă, T., Integral operators that preserve the subordination, Bull. Korean math. soc., 32, 627-636, (1997)
[3] Bulboacă, T., A class of superordination-preserving integral operators, Indag. math. (new ser.), 13, 301-311, (2002)
[4] Cho, N.E.; Srivastava, H.M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. comput. modelling, 37, 39-49, (2003) · Zbl 1050.30007
[5] Cho, N.E.; Srivastava, H.M., A class of nonlinear integral operators preserving subordination and superordination, Integral transforms spec. funct., 18, 95-107, (2007) · Zbl 1109.30022
[6] Cho, N.E.; Kwon, O.S.; Owa, S.; Srivastava, H.M., A class of integral operators preserving subordination and superordination for meromorphic functions, Appl. math. comput., 193, 463-474, (2007) · Zbl 1193.30032
[7] Goel, R.M.; Sohi, N.S., A new criterion for p-valent functions, Proc. amer. math. soc., 78, 353-357, (1980) · Zbl 0444.30012
[8] Jung, I.B.; Kim, Y.C.; Srivastava, H.M., The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. math. anal. appl., 176, 138-147, (1993) · Zbl 0774.30008
[9] Kaplan, W., Close-to-convex schlicht functions, Michigan math. J., 2, 169-185, (1952) · Zbl 0048.31101
[10] Libera, R.J., Some classes of regular univalent functions, Proc. amer. math. soc., 16, 755-758, (1965) · Zbl 0158.07702
[11] Miller, S.S.; Mocanu, P.T., Differential subordinations and univalent functions, Michigan math. J., 28, 157-171, (1981) · Zbl 0439.30015
[12] Miller, S.S.; Mocanu, P.T., Univalent solutions of briot – bouquet differential equations, J. differential equations, 567, 297-309, (1985) · Zbl 0507.34009
[13] Miller, S.S.; Mocanu, P.T., Differential subordination: theory and applications, Series on monographs and textbooks in pure and applied mathematics, Vol. 225, (2000), Marcel Dekker Incorporated New York, Basel
[14] Miller, S.S.; Mocanu, P.T., Subordinants of differential superordinations, Complex variables theory appl., 48, 815-826, (2003) · Zbl 1039.30011
[15] Miller, S.S.; Mocanu, P.T.; Reade, M.O., Subordination-preserving integral operators, Trans. amer. math. soc., 283, 605-615, (1984) · Zbl 0506.30011
[16] Owa, S.; Srivastava, H.M., Some applications of the generalized libera integral operator, Proc. Japan acad. ser. A math. sci., 62, 125-128, (1986) · Zbl 0583.30016
[17] Owa, S.; Srivastava, H.M., Some subordination theorems involving a certain family of integral operators, Integral transforms spec. funct., 15, 445-454, (2004) · Zbl 1057.30015
[18] Pommerenke, Ch., Univalent functions, (1975), Vanderhoeck and Ruprecht Göttingen · Zbl 0283.30034
[19] Prajapat, J.K.; Goyal, S.P., Applications of srivastava – attiya operator to the class of strongly starlike and strongly convex functions, J. math. inequal., 3, 129-137, (2009) · Zbl 1160.30325
[20] Sălăgean, G.Ş., Subclasses of univalent functions, (), 362-372
[21] Srivastava, H.M.; Attiya, A.A., An integral operator associated with the hurwitz – lerch zeta function and differential subordination, Integral transforms spec. funct., 18, 207-216, (2007) · Zbl 1112.30007
[22] ()
[23] Uralegaddi, B.A.; Somanatha, C., Certain classes of univalent functions, (), 371-374 · Zbl 0987.30508
[24] Wang, Z.-G.; Li, Q.-G.; Jiang, Y.-P., Certain subclasses of multivalent analytic functions involving the generalized srivastava – attiya operator, Integral transforms spec. funct., 21, 221-234, (2010) · Zbl 1187.30024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.