zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact solution of impulse response to a class of fractional oscillators and its stability. (English) Zbl 1202.34018
Summary: Oscillator of single-degree-freedom is a typical model in system analysis. Oscillations resulted from differential equations with fractional order attract the interests of researchers since such a type of oscillations may appear dramatic behaviors in system responses. However, a solution to the impulse response of a class of fractional oscillators studied in this paper remains unknown in the field. In this paper, we propose the solution in the closed form to the impulse response of the class of fractional oscillators. Based on it, we reveal the stability behavior of this class of fractional oscillators as follows. A fractional oscillator in this class may be strictly stable, nonstable, or marginally stable, depending on the ranges of its fractional order.

34A08Fractional differential equations
Full Text: DOI EuDML
[1] M. D. Ortigueira and A. G. Batista, “On the relation between the fractional Brownian motion and the fractional derivatives,” Physics Letters A, vol. 372, no. 7, pp. 958-968, 2008. · Zbl 1217.26016 · doi:10.1016/j.physleta.2007.08.062
[2] M. D. Ortigueira, “An introduction to the fractional continuous-time linear systems: the 21st century systems,” IEEE Circuits and Systems Magazine, vol. 8, no. 3, pp. 19-26, 2008. · doi:10.1109/MCAS.2008.928419
[3] Y. Luo and Y. Chen, “Fractional order [proportional derivative] controller for a class of fractional order systems,” Automatica, vol. 45, no. 10, pp. 2446-2450, 2009. · Zbl 1183.93053 · doi:10.1016/j.automatica.2009.06.022
[4] Y. Q. Chen and K. L. Moore, “Discretization schemes for fractional-order differentiators and integrators,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 3, pp. 363-367, 2002. · doi:10.1109/81.989172
[5] J. A. Tenreiro Machado, M. F. Silva, R. S. Barbosa, et al., “Some applications of fractional calculus in engineering,” Mathematical Problems in Engineering, vol. 2010, Article ID 639801, 34 pages, 2010. · Zbl 1191.26004 · doi:10.1155/2010/639801 · eudml:226365
[6] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 145-155, 2002. · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[7] I. Podlubny, I. Petrá\vs, B. M. Vinagre, P. O’Leary, and L. Dor\vcák, “Analogue realizations of fractional-order controllers,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 281-296, 2002. · Zbl 1041.93022 · doi:10.1023/A:1016556604320
[8] C. H. Eab and S. C. Lim, “Path integral representation of fractional harmonic oscillator,” Physica A, vol. 371, no. 2, pp. 303-316, 2006. · doi:10.1016/j.physa.2006.03.029
[9] C. H. Eab and S. C. Lim, “Fractional generalized Langevin equation approach to single-file diffusion,” Physica A, vol. 389, no. 13, pp. 2510-2521, 2010. · doi:10.1016/j.physa.2010.02.041
[10] C.-C. Tseng and S.-L. Lee, “Digital IIR integrator design using recursive Romberg integration rule and fractional sample delay,” Signal Processing, vol. 88, no. 9, pp. 2222-2233, 2008. · Zbl 1151.94418 · doi:10.1016/j.sigpro.2008.03.008
[11] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge, UK, 2009. · Zbl 1188.37002
[12] C. M. Harris, Ed., Shock and Vibration Handbook, McGraw-Hill, New York, NY, USA, 4th edition, 1995.
[13] Y. Chen and K. L. Moore, “Analytical stability bound for a class of delayed fractional-order dynamic systems,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 191-200, 2002. · Zbl 1020.34064 · doi:10.1023/A:1016591006562
[14] H.-S. Ahn and Y. Chen, “Necessary and sufficient stability condition of fractional-order interval linear systems,” Automatica, vol. 44, no. 11, pp. 2985-2988, 2008. · Zbl 1152.93455 · doi:10.1016/j.automatica.2008.07.003
[15] D. Qian, C. Li, R. P. Agarwal, and P. J. Y. Wong, “Stability analysis of fractional differential system with Riemann-Liouville derivative,” Mathematical and Computer Modelling, vol. 52, no. 5-6, pp. 862-874, 2010. · Zbl 1202.34020 · doi:10.1016/j.mcm.2010.05.016
[16] S. S. Antman, J. E. Marsden, and L. Sirovich, Eds., Applied Delay Differential Equations, Springer, New York, NY, USA, 2009.
[17] B. N. N. Achar, J. W. Hanneken, T. Enck, and T. Clarke, “Dynamics of the fractional oscillator,” Physica A, vol. 297, no. 3-4, pp. 361-367, 2001. · Zbl 0969.70511 · doi:10.1016/S0378-4371(01)00200-X
[18] B. N. N. Achar, J. W. Hanneken, and T. Clarke, “Damping characteristics of a fractional oscillator,” Physica A, vol. 339, no. 3-4, pp. 311-319, 2004. · doi:10.1016/j.physa.2004.03.030
[19] B. N. Narahari Achar, J. W. Hanneken, T. Enck, and T. Clarke, “Response characteristics of a fractional oscillator,” Physica A, vol. 309, no. 3-4, pp. 275-288, 2002. · Zbl 0995.70017 · doi:10.1016/S0378-4371(02)00609-X
[20] A. Al-rabtah, V. S. Ertürk, and S. Momani, “Solutions of a fractional oscillator by using differential transform method,” Computers and Mathematics with Applications, vol. 59, no. 3, pp. 1356-1362, 2010. · Zbl 1189.34068 · doi:10.1016/j.camwa.2009.06.036
[21] S. C. Lim, M. Li, and L. P. Teo, “Locally self-similar fractional oscillator processes,” Fluctuation and Noise Letters, vol. 7, no. 2, pp. L169-L179, 2007. · doi:10.1142/S0219477507003817
[22] S. C. Lim, M. Li, and L. P. Teo, “Langevin equation with two fractional orders,” Physics Letters A, vol. 372, no. 42, pp. 6309-6320, 2008. · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[23] S. C. Lim and S. V. Muniandy, “Self-similar Gaussian processes for modeling anomalous diffusion,” Physical Review E, vol. 66, no. 2, Article ID 021114, pp. 021114/1-021114/14, 2002. · doi:10.1103/PhysRevE.66.021114
[24] S. C. Lim and L. P. Teo, “The fractional oscillator process with two indices,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 6, Article ID 065208, 34 pages, 2009. · Zbl 1156.82010 · doi:10.1088/1751-8113/42/6/065208
[25] M. Li, “Fractal time series-a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. · Zbl 1191.37002 · doi:10.1155/2010/157264 · eudml:224046
[26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[27] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier, Singapore, 7th edition, 2007, edited by A. Jeffrey and D. Zwillinger. · Zbl 1208.65001
[28] R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice Hall, Upper Saddle River, NJ, USA, 9th edition, 2002. · Zbl 0907.93001
[29] H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002.
[30] M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368-1372, 2010. · doi:10.1109/TPDS.2009.162
[31] M. Li and S. C. Lim, “Power spectrum of generalized Cauchy process,” Telecommunication Systems, vol. 43, no. 3-4, pp. 219-222, 2010. · doi:10.1007/s11235-009-9209-2
[32] M. Li, “Generation of teletraffic of generalized Cauchy type,” Physica Scripta, vol. 81, no. 2, Article ID 025007, 10 pages, 2010. · Zbl 1191.90013 · doi:10.1088/0031-8949/81/02/025007
[33] M. Li and S. C. Lim, “Modeling network traffic using generalized Cauchy process,” Physica A, vol. 387, no. 11, pp. 2584-2594, 2008. · doi:10.1016/j.physa.2008.01.026
[34] S. C. Lim and M. Li, “A generalized Cauchy process and its application to relaxation phenomena,” Journal of Physics A: Mathematical and General, vol. 39, no. 12, pp. 2935-2951, 2006. · Zbl 1090.82013 · doi:10.1088/0305-4470/39/12/005
[35] M. Li, “Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-A further study,” Applied Mathematical Modelling, vol. 31, no. 3, pp. 625-631, 2007. · Zbl 1197.94006 · doi:10.1016/j.apm.2005.11.029
[36] S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167-176, 2008. · doi:10.1109/TIP.2007.914755
[37] S. Y. Chen, Y. F. Li, Q. Guan, and G. Xiao, “Real-time three-dimensional surface measurement by color encoded light projection,” Applied Physics Letters, vol. 89, no. 11, Article ID 111108, 2006. · doi:10.1063/1.2352729
[38] E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages, 2010. · Zbl 1191.35220 · doi:10.1155/2010/695208 · eudml:229128
[39] C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207-217, 2010. · doi:10.1007/s11235-009-9208-3
[40] O. M. Abuzeid, A. N. Al-Rabadi, and H. S. Alkhaldi, “Fractal geometry-based hypergeometric time series solution to the hereditary thermal creep model for the contact of rough surfaces using the Kelvin-Voigt medium,” Mathematical Problems in Engineering, vol. 2010, Article ID 652306, 22 pages, 2010. · Zbl 05793780 · doi:10.1155/2010/652306
[41] C. Cattani, “Fractals and hidden symmetries in DNA,” Mathematical Problems in Engineering, vol. 2010, Article ID 507056, 31 pages, 2010. · Zbl 1189.92015 · doi:10.1155/2010/507056 · eudml:232469
[42] J. Chen, C. Hu, and Z. Ji, “An improved ARED algorithm for congestion control of network transmission,” Mathematical Problems in Engineering, vol. 2010, Article ID 329035, 14 pages, 2010. · Zbl 1191.68096 · doi:10.1155/2010/329035 · eudml:223317
[43] E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. · Zbl 1191.35219 · doi:10.1155/2010/428903 · eudml:225118