Invariant manifolds for competitive discrete systems in the plane. (English) Zbl 1202.37027

Summary: Let T be a competitive map on a rectangular region \(\mathcal R \subset \mathbb R^2\), and assume \(T\) is \(C^{1}\) in a neighborhood of a fixed point \(\bar x \in \mathcal R\). The main results of this paper give conditions on \(T\) that guarantee the existence of an invariant curve emanating from \(\bar x\) when both eigenvalues of the Jacobian of \(T\) at \(\bar x\) are nonzero and at least one of them has absolute value less than one, and establish that \(\mathcal C\) is an increasing curve that separates \(\mathcal R\) into invariant regions. The results apply to many hyperbolic and nonhyperbolic cases, and can be effectively used to determine basins of attraction of fixed points of competitive maps, or equivalently, of equilibria of competitive systems of difference equations. These results, known in hyperbolic case, have been used to determine the basins of attraction of hyperbolic equilibrium points and to establish certain global bifurcation results when switching from competitive coexistence to competitive exclusion. The emphasis in applications in this paper is on planar systems of difference equations with nonhyperbolic equilibria, where we establish a precise description of the basins of attraction of finite or infinite number of equilibrium points.


37D10 Invariant manifold theory for dynamical systems
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
Full Text: DOI arXiv


[1] Alligood K. T., Chaos: An Introduction to Dynamical Systems (1996) · Zbl 0867.58043
[2] DOI: 10.1006/jmaa.1999.6346 · Zbl 0962.39004
[3] Basu S., Comm. Appl. Nonlin. Anal. 16 pp 89–
[4] Burgić Dž., Adv. Dyn. Syst. Appl. 3 pp 229–
[5] DOI: 10.1080/10236190802125264 · Zbl 1169.39010
[6] DOI: 10.1016/S0898-1221(01)00326-1 · Zbl 1001.39017
[7] DOI: 10.1016/S0362-546X(02)00294-8 · Zbl 1019.39006
[8] DOI: 10.1080/10236190412331334464
[9] DOI: 10.1080/10236190410001652739 · Zbl 1071.39005
[10] Dancer E., J. Reine Angew Math. 419 pp 125–
[11] DOI: 10.1007/BF00276900 · Zbl 0474.92015
[12] DOI: 10.1007/BF00160333 · Zbl 0735.92023
[13] DOI: 10.1016/0362-546X(91)90163-U · Zbl 0724.92024
[14] DOI: 10.1016/0022-247X(92)90167-C · Zbl 0778.93012
[15] Garić-Demirović M., Discr. Dyn. Nat. Soc. pp 34–
[16] Hartman P., Ordinary Differential Equations (1964) · Zbl 0125.32102
[17] DOI: 10.1017/CBO9780511998188
[18] Hess P., Pitman Research Notes in Mathematics Series 247 (1991)
[19] DOI: 10.1137/0524075 · Zbl 0797.58077
[20] M. Hirsch and H. Smith, Handbook of Differential Equations, Ordinary Differential Equations 2 (Elsevier B. V., Amsterdam, 2005) pp. 239–357.
[21] DOI: 10.1201/9781420035384
[22] DOI: 10.1201/9781420035353
[23] Kulenović M. R. S., Discr. Contin. Dyn. Syst. Ser. B 6 pp 1141–
[24] Kulenović M. R. S., Discr. Contin. Dyn. Syst. Ser. B 12 pp 133–
[25] Kulenović M. R. S., Adv. Diff. Equ. pp 13–
[26] DOI: 10.1007/BF00375672 · Zbl 0755.58039
[27] Robinson C., Dynamical Systems (1999)
[28] DOI: 10.1007/BF00276194 · Zbl 0634.92008
[29] DOI: 10.1016/0022-0396(86)90086-0 · Zbl 0596.34013
[30] DOI: 10.1137/0517075 · Zbl 0606.47056
[31] DOI: 10.1137/0517091 · Zbl 0609.34048
[32] DOI: 10.1080/10236199708808108 · Zbl 0907.39004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.