×

Paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds and semi-Riemannian submersions. (English) Zbl 1202.53054

Summary: We introduce paraquaternionic CR-submanifolds of almost paraquaternionic Hermitian manifolds and state some basic results on their differential geometry. We also study a class of semi-Riemannian submersions from paraquaternionic CR-submanifolds of paraquaternionic Kähler manifolds.

MSC:

53C40 Global submanifolds
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
32V30 Embeddings of CR manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Al-Aqeel A., Bejancu A., On normal semi-invariant submanifolds of paraquaternionic Kähler manifolds, Toyama Math. J., 2007, 30, 63-75; · Zbl 1146.53011
[2] Alekseevsky D., Cortés V., The twistor spaces of a para-quaternionic Kähler manifold, Osaka J. Math., 2008, 45(1), 215-251; · Zbl 1177.53047
[3] Alekseevsky D., Kamishima Y., Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds, Cent. Eur. J. Math., 2004, 2(5), 732-753 http://dx.doi.org/10.2478/BF02475974; · Zbl 1116.53046
[4] Alekseevsky D.V., Marchiafava S., Almost complex submanifolds of quaternionic manifolds, In: Proceedings of the colloquium on differential geometry, Debrecen (Hungary), 25-30 July 2000, Inst. Math. Inform. Debrecen, 2001, 23-38; · Zbl 1075.53529
[5] Barros M., Chen B.-Y., Urbano F., Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J., 1981, 4(3), 399-417 http://dx.doi.org/10.2996/kmj/1138036425; · Zbl 0481.53046
[6] Bejancu A., CR submanifolds of a Kaehler manifold I, Proc. Am. Math. Soc., 1978, 69(1), 135-142; · Zbl 0368.53040
[7] Bejancu A., Geometry of CR-submanifolds, Mathematics and its Applications (East European Series), 23, D. Reidel Publishing Co., Dordrecht, 1986; · Zbl 0605.53001
[8] Bejancu A., Normal semi-invariant submanifolds of paraquaternionic Kähler manifolds, Kuwait J. Sci. Engrg., 2006, 33(2), 33-45; · Zbl 1207.53063
[9] Bejancu A., Farran H.R., Foliations and Geometric Structures, Mathematics and Its Applications, 580, Springer, Dordrecht, 2006; · Zbl 1092.53021
[10] Blažić N., Paraquaternionic projective spaces and pseudo-Riemannian geometry, Publ. Inst. Math. (Beograd), 1996, 60(74), 101-107; · Zbl 1002.53020
[11] Blažić N., Vukmirović S., Solutions of Yang-Mills equations on generalized Hopf bundles, J. Geom. Phys., 2002, 41(1-2), 57-64; · Zbl 1009.53021
[12] Chen B.-Y., Cohomology of CR-submanifolds, Ann. Fac. Sci. Toulouse Math., 1981, 3(2), 167-172; · Zbl 0478.53046
[13] Dancer A.S., Jørgensen H.R., Swann A.F., Metric geometries over the split quaternions, Rend. Sem. Mat. Univ. Politec. Torino, 2005, 63(2), 119-139; · Zbl 1178.53041
[14] Falcitelli M., Ianuş S., Pastore A.M., Riemannian Submersions and Related Topics, World Scientific, River Edge, 2004 http://dx.doi.org/10.1142/9789812562333; · Zbl 1067.53016
[15] Galicki K., Lawson H.B., Quaternionic reduction and quaternionic orbifolds, Math. Ann., 1988, 282(1), 1-21 http://dx.doi.org/10.1007/BF01457009; · Zbl 0628.53060
[16] Garcia-Rio E., Matsushita Y., Vásquez-Lorenzo R., Paraquaternionic Kähler manifolds, Rocky Mountain J. Math., 2001, 31(1), 237-260 http://dx.doi.org/10.1216/rmjm/1008959679; · Zbl 0987.53020
[17] Ianuş S., Ionescu A.M., Vîlcu G.E., Foliations on quaternion CR-submanifolds, Houston J. Math., 2008, 34(3), 739-751; · Zbl 1155.53017
[18] Ianuş S., Mazzocco R., Vîlcu G.E., Real lightlike hypersurfaces of paraquaternionic Kähler manifolds, Mediterr. J. Math., 2006, 3(3-4), 581-592; · Zbl 1167.53307
[19] Ianuş S., Vîlcu G.E., Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles, Int. J. Geom. Methods Mod. Phys., 2008, 5(6), 893-903 http://dx.doi.org/10.1142/S0219887808003016; · Zbl 1156.53044
[20] Ionescu A.M., Vîlcu G.E., A note on paraquaternionic manifolds, Missouri J. Math. Sci., 2007, 19(3), 213-218; · Zbl 1152.53024
[21] Ivanov S., Zamkovoy S., Parahermitian and paraquaternionic manifolds, Differential Geom. Appl., 2005, 23(2), 205-234 http://dx.doi.org/10.1016/j.difgeo.2005.06.002; · Zbl 1115.53022
[22] Kobayashi S., Submersions of CR submanifolds, Tôhoku Math. J., 1987, 39(1), 95-100; · Zbl 0619.58004
[23] Libermann P., Sur le problème d’équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl., 1954, 36, 27-120 http://dx.doi.org/10.1007/BF02412833; · Zbl 0056.15401
[24] Marchiafava S., Submanifolds of (para)-quaternionic Kähler manifolds, Note Mat., 2008, 28(suppl.1), 295-316; · Zbl 1197.53069
[25] O’Neill B., Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983; · Zbl 0531.53051
[26] Ornea L., CR-submanifolds. A class of examples, Rev. Roumaine Math. Pures Appl., 2006, 51(1), 77-85; · Zbl 1119.53313
[27] Vaccaro M., Kaehler and para-Kaehler submanifolds of a para-quaternionic Kaehler manifold, Ph.D. thesis, Università degli Studi di Roma II’ Tor Vergata’, Rome, Italy, 2007;
[28] Vîlcu G.E., Submanifolds of an Almost Paraquaternionic Kähler Product Manifold, Int. Math. Forum, 2007, 2(15), 735-746; · Zbl 1156.53308
[29] Vukmirovic S., Paraquaternionic reduction, preprint available at http://arxiv.org/abs/math/0304424;
[30] Wu H., On the de Rham decomposition theorem, Illinois J. Math., 1964, 8, 291-311; · Zbl 0122.40005
[31] Yano K., Kon M., CR Submanifolds of Kaehlerian and Sasakian Manifolds, Progress in Mathematics, 30, Birkhäuser, Boston, 1983; · Zbl 0496.53037
[32] Zamkovoy S., Geometry of paraquaternionic Kähler manifolds with torsion, J. Geom. Phys., 2006, 57(1), 69-87 http://dx.doi.org/10.1016/j.geomphys.2006.02.003; · Zbl 1109.53035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.