Brown, Lawrence D.; Cai, T. Tony; Zhou, Harrison H. Nonparametric regression in exponential families. (English) Zbl 1202.62050 Ann. Stat. 38, No. 4, 2005-2046 (2010). Summary: Most results in nonparametric regression theory are developed only for the case of additive noise. In such a setting many smoothing techniques including wavelet thresholding methods have been developed and shown to be highly adaptive. We consider nonparametric regression in exponential families with the main focus on natural exponential families with a quadratic variance function, which include, for example, Poisson regression, binomial regression and gamma regression. We propose a unified approach of using a mean-matching variance stabilizing transformation to turn the relatively complicated problem of nonparametric regression in exponential families into a standard homoscedastic Gaussian regression problem. Then in principle any good nonparametric Gaussian regression procedure can be applied to the transformed data. To illustrate our general methodology, in this paper we use wavelet block thresholding to construct the final estimators of the regression function. The procedures are easily implementable. Both theoretical and numerical properties of the estimators are investigated. The estimators are shown to enjoy a high degree of adaptivity and spatial adaptivity with near-optimal asymptotic performance over a wide range of Besov spaces. The estimators also perform well numerically. Cited in 1 ReviewCited in 16 Documents MSC: 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference 65C60 Computational problems in statistics (MSC2010) Keywords:adaptivity; asymptotic equivalence; exponential family; James-Stein estimator; nonparametric Gaussian regression; quadratic variance function; quantile coupling; wavelets × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative binomial data. Biometrika 35 246-254. JSTOR: · Zbl 0032.03702 · doi:10.1093/biomet/35.3-4.246 [2] Antoniadis, A. and Leblanc, F. (2000). Nonparametric wavelet regression for binary response. Statistics 34 183-213. · Zbl 0955.62041 · doi:10.1080/02331880008802713 [3] Antoniadis, A. and Sapatinas, T. (2001). Wavelet shrinkage for natural exponential families with quadratic variance functions. Biometrika 88 805-820. JSTOR: · Zbl 0985.62021 · doi:10.1093/biomet/88.3.805 [4] Bar-Lev, S. K. and Enis, P. (1990). On the construction of classes of variance stabilizing transformations. Statist. Probab. Lett. 10 95-100. · Zbl 0716.62026 · doi:10.1016/0167-7152(90)90002-O [5] Bartlett, M. S. (1936). The square root transformation in analysis of variance. J. Roy. Statist. Soc. Suppl. 3 68-78. · JFM 63.1085.01 [6] Berk, R. A. and MacDonald, J. (2008). Overdispersion and Poisson regression. J. Quantitative Criminology 4 289-308. [7] Besbeas, P., De Feis, I. and Sapatinas, T. (2004). A comparative simulation study of wavelet shrinkage estimators for poisson counts. Internat. Statist. Rev. 72 209-237. · Zbl 1211.62055 · doi:10.1111/j.1751-5823.2004.tb00234.x [8] Brown, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory . IMS, Hayward, CA. · Zbl 0685.62002 [9] Brown, L. D., Cai, T. T., Zhang, R., Zhao, L. H. and Zhou, H. H. (2010). The Root-unroot algorithm for density estimation as implemented via wavelet block thresholding. Probab. Theory Related Fields 146 401-433. · Zbl 1180.62055 · doi:10.1007/s00440-008-0194-2 [10] Brown, L. D., Cai, T. T. and Zhou, H. H. (2008). Robust Nonparametric Estimation via Wavelet Median Regression. Ann. Statist. 36 2055-2084. · Zbl 1148.62019 · doi:10.1214/07-AOS513 [11] Brown L. D. and Low, M. G. (1996). A constrained risk inequality with applications to nonparametric functional estimation. Ann. Statist. 24 2524-2535. · Zbl 0867.62023 · doi:10.1214/aos/1032181166 [12] Cai, T. T. (1999). Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann. Statist. 27 898-924. · Zbl 0954.62047 · doi:10.1214/aos/1018031262 [13] Cai, T. T. (2002). On block thresholding in wavelet regression: Adaptivity, block Size, and threshold level. Statist. Sinica 12 1241-1273. · Zbl 1004.62036 [14] Cai, T. T. and Silverman, B. W. (2001). Incorporating information on neighboring coefficients into wavelet estimation. Sankhyā Ser. B 63 127-148. · Zbl 1192.42020 [15] Daubechies, I. (1992). Ten Lectures on Wavelets . SIAM, Philadelphia, PA. · Zbl 0776.42018 [16] DeVore, R. and Popov, V. (1988). Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305 397-414. JSTOR: · Zbl 0646.46030 · doi:10.2307/2001060 [17] Donoho, D. L. (1993). Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In Different Perspectives on Wavelets (I. Daubechies, ed.) 173-205. Amer. Math. Soc., Providence, RI. · Zbl 0786.62094 [18] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. JSTOR: · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425 [19] Efron, B. (1982). Transformation theory: How normal is a family of a distributions? Ann. Statist. 10 323-339. · Zbl 0507.62008 · doi:10.1214/aos/1176345777 [20] Fryźlewicz, P. and Nason, G. P. (2001). Poisson intensity estimation using wavelets and the Fisz transformation. J. Comput. Graph. Statist. 13 621-638. [21] Hall, P., Kerkyacharian, G. and Picard, D. (1998). Block threshold rules for curve estimation using kernel and wavelet methods. Ann. Statist. 26 922-942. · Zbl 0929.62040 · doi:10.1214/aos/1024691082 [22] Hilbe, J. M. (2007). Negative Binomial Regression . Cambridge Univ. Press, Cambridge. · Zbl 1131.62068 · doi:10.1017/CBO9780511811852 [23] Hoyle, M. H. (1973). Transformations-an introduction and bibliography. Internat. Statist. Rev. 41 203-223. JSTOR: · Zbl 0267.62005 · doi:10.2307/1402836 [24] Johnson, N. L., Kemp, A. W. and Kotz, S. (2005). Univariate Discrete Distributions . Wiley, New York. · Zbl 1092.62010 [25] Kaneko, Y. (2005). Spectral studies of Gamma-Ray burst prompt emission. Ph. D. dissertation, Univ. Alabama, Huntsville. [26] Kolaczyk, E. D. (1999a). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. Statist. Sinica 9 119-135. · Zbl 0927.62081 [27] Kolaczyk, E. D. (1999b). Bayesian multiscale models for Poisson processes. J. Amer. Statist. Assoc. 94 920-933. JSTOR: · Zbl 1072.62630 · doi:10.2307/2670007 [28] Kolaczyk, E. D. and Nowak, R. D. (2005). Multiscale generalized linear models for nonparametric function estimation. Biometrika 92 119-133. · Zbl 1068.62046 · doi:10.1093/biomet/92.1.119 [29] Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent rv’s, and the sample df. I. Z. Wahrsch. Verw. Gebiete 32 111-131. · Zbl 0308.60029 · doi:10.1007/BF00533093 [30] Lepski, O. V. (1990). On a problem of adaptive estimation in white Gaussian noise. Theory Probab. Appl. 35 454-466. · Zbl 0725.62075 [31] Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses , 3rd ed. Springer, Berlin. · Zbl 1076.62018 [32] Meyer, Y. (1992). Wavelets and Operators . Cambridge Univ. Press, Cambridge. · Zbl 0776.42019 [33] Morris, C. (1982). Natural exponential families with quadratic variance functions. Ann. Statist. 10 65-80. · Zbl 0498.62015 · doi:10.1214/aos/1176345690 [34] Petrov, V. V. (1975). Sums of Independent Random Variables . Springer, Berlin. · Zbl 0322.60043 [35] Pollard, D. P. (2002). A User’s Guide to Measure Theoretic Probability . Cambridge Univ. Press, Cambridge. · Zbl 0992.60001 · doi:10.1017/CBO9780511811555 [36] Quilligan, F., McBreen, B., Hanlon, L., McBreen, S., Hurley, K. J. and Watson, D. (2002). Temporal properties of gamma-ray bursts as signatures of jets from the central engine. Astronom. Astrophys. 385 377-398. [37] Runst, T. (1986). Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type. Anal. Math. 12 313-346. · Zbl 0644.46022 · doi:10.1007/BF01909369 [38] Strang, G. (1992). Wavelet and dilation equations: A brief introduction. SIAM Rev. 31 614-627. JSTOR: · Zbl 0683.42030 · doi:10.1137/1031128 [39] Triebel, H. (1992). Theory of Function Spaces . II. Birkhäuser, Basel. · Zbl 0763.46025 [40] Yajnik, M., Moon, S. Kurose, J. and Towsley, D. (1999). Measurement and modelling of the temporal dependence in packet loss. In IEEE INFOCOM ’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320) 345-353. [41] Zhou, H. H. (2006). A note on quantile coupling inequalities and their applications. Submitted. Available at www.stat.yale.edu/ hz68. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.