Wadsworth, J. L.; Tawn, J. A.; Jonathan, P. Accounting for choice of measurement scale in extreme value modeling. (English) Zbl 1202.62066 Ann. Appl. Stat. 4, No. 3, 1558-1578 (2010). Summary: We investigate the effect that the choice of measurement scale has upon inference and extrapolation in extreme value analysis. Separate analyses of variables from a single process on scales which are linked by a nonlinear transformation may lead to discrepant conclusions concerning the tail behavior of the process. We propose the use of a G. E. P. Box and D. R. Cox [J. R. Stat. Soc., Ser. B 26, 211–243 (1964; Zbl 0156.40104)] power transformation incorporated as part of the inference procedure to account parametrically for the uncertainty surrounding the scale of extrapolation. This has the additional feature of increasing the rate of convergence of the distribution tails to an extreme value form in certain cases and thus reducing bias in the model estimation. Inference without reparameterization is practicably infeasible, so we explore a reparameterization which exploits the asymptotic theory of normalizing constants required for nondegenerate limit distributions. Inference is carried out in a Bayesian setting, an advantage of this being the availability of posterior predictive return levels. The methodology is illustrated on both simulated data and significant wave height data from the North Sea. Cited in 5 Documents MSC: 62G32 Statistics of extreme values; tail inference 62F15 Bayesian inference 62E20 Asymptotic distribution theory in statistics 65C60 Computational problems in statistics (MSC2010) Keywords:extreme value theory; Box-Cox transformation; reparameterization; significant wave height Citations:Zbl 0156.40104 Software:ismev × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 26 211-252. · Zbl 0156.40104 [2] Coles, S. G. (2001). An Introduction to the Statistical Modeling of Extreme Values . Springer, London. · Zbl 0980.62043 [3] Coles, S. G. and Tawn, J. A. (1996). A Bayesian analysis of extreme rainfall data. J. Roy. Statist. Soc. Ser. C 45 463-478. [4] Cormann, U. and Reiss, R.-D. (2009). Generalizing the Pareto to the log-Pareto model and statistical inference. Extremes 12 93-105. · Zbl 1221.62039 · doi:10.1007/s10687-008-0070-6 [5] Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion). J. R. Statist. Soc. Ser. B Stat. Methodol. 52 393-442. · Zbl 0706.62039 [6] Eastoe, E. F. and Tawn, J. A. (2009). Modelling non-stationary extremes with application to surface level ozone. J. Roy. Statist. Soc. Ser. C 58 25-45. · doi:10.1111/j.1467-9876.2008.00638.x [7] Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Cambridge Philos. Soc. 24 180-190. · JFM 54.0560.05 [8] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes . Springer, New York. · Zbl 0518.60021 [9] Pickands, J. (1971). The two-dimensional Poisson process and extremal processes. J. Appl. Probab. 8 745-756. · Zbl 0242.62024 · doi:10.2307/3212238 [10] Pickands, J. (1986). The continuous and differentiable domains of attraction of the extreme value distributions. Ann. Probab. 14 996-1004. · Zbl 0593.60035 · doi:10.1214/aop/1176992453 [11] Smith, R. L. (1987). Approximations in extreme value theory. Technical Report 205, Dept. Statistics, Univ. North Carolina. [12] Smith, R. L. and Weissman, I. (1994). Estimating the extremal index. J. R. Stat. Soc. Ser. B Stat. Methodol. 56 515-528. · Zbl 0796.62084 [13] Teugels, J. L. and Vanroelen, G. (2004). Box-Cox transformations and heavy-tailed distributions. J. Appl. Probab. 41 213-227. · Zbl 1048.62053 · doi:10.1239/jap/1082552200 [14] Tromans, P. S. and Vanderschuren, L. (1995). Response based design conditions in the North Sea: Application of a new method. In Offshore Technology Conference, Houston OTC-7683 . This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.