Optimal designs for random effect models with correlated errors with applications in population pharmacokinetics. (English) Zbl 1202.62101

Summary: We consider the problem of constructing optimal designs for population pharmacokinetics which use random effect models. It is common practice in the design of experiments in such studies to assume uncorrelated errors for each subject. In the present paper a new approach is introduced to determine efficient designs for nonlinear least squares estimation which addresses the problem of correlation between observations corresponding to the same subject. We use asymptotic arguments to derive optimal design densities, and the designs for finite sample sizes are constructed from the quantiles of the corresponding optimal distribution function. It is demonstrated that compared to the optimal exact designs, whose determination is a hard numerical problem, these designs are very efficient. Alternatively, the designs derived from asymptotic theory could be used as starting designs for the numerical computation of exact optimal designs. Several examples of linear and nonlinear models are presented in order to illustrate the methodology. In particular, it is demonstrated that naively chosen equally spaced designs may lead to less accurate estimation.


62K05 Optimal statistical designs
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
62P10 Applications of statistics to biology and medical sciences; meta analysis
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI arXiv


[1] Aarons, L. (1999). Software for population pharmacokinetics and pharmacodynamics. Clinical Pharmacokinetics 36 255-264.
[2] Atkinson, A. C. (2008). Examples of the use of an equivalence theorem in constructing optimum experimental designs for random-effects nonlinear regression models. J. Statist. Plann. Inference 138 2595-2606. · Zbl 1141.62059
[3] Atkinson, A. C. and Donev, A. (1992). Optimum Experimental Designs . Clarendon Press, Oxford. · Zbl 0829.62070
[4] Atkinson, A. C., Chaloner, K., Herzberg, A. M. and Juritz, J. (1993). Optimum experimental designs for properties of a compartmental model. Biometrics 49 325-337. · Zbl 0780.62056
[5] Bickel, P. J. and Herzberg, A. M. (1979). Robustness of design against autocorrelation in time I: Asymptotic theory, optimality for location and linear regression. Ann. Statist. 7 77-95. · Zbl 0403.62051
[6] Bickel, P. J., Herzberg, A. M. and Schilling, M. F. (1981). Robustness of design against autocorrelation in time II: Optimality, theoretical and numerical results for the first-order autoregressive process. J. Amer. Statist. Assoc. 76 870-877. · Zbl 0505.62063
[7] Biedermann, S., Dette, H. and Pepelyshev, A. (2004). Maximin optimal designs for a compartmental model. In MODA 7-Advances in Model-Oriented Design and Analysis 41-48. Physica-Verlag, Heidelberg.
[8] Box, G. E. P. and Lucas, H. L. (1959). Design of experiments in non-linear situations. Biometrika 46 77-90. · Zbl 0086.34803
[9] Buelga, D. S., del Mar Fernandez de Gatta, M., Herrera, E. V., Dominguez-Gil, A. and Garcia, M. J. (2005). The Bateman function revisited: A critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. Antimicrobial Agents and Chemotherapy 49 103-128.
[10] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 237-304. · Zbl 0955.62617
[11] Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist. 24 586-602. · Zbl 0053.10504
[12] Colombo, S., Buclin, T., Cavassini, M., Decosterd, L., Telenti, A., Biollaz, J. and Csajka, C. (2006). Population pharmacokinetics of atazanavir in patients with human immunodeficiency virus infection. Antimicrobial Agents and Chemotherapy 50 3801-3808.
[13] Dette, H. (1995). Designing of experiments with respect to “standardized” optimality criteria. J. Roy. Statist. Soc. Ser. B 59 97-110. · Zbl 0884.62081
[14] Dette, H. and O’Brien, T. (1999). Optimality criteria for regression models based on predicted variance. Biometrika 86 93-106. · Zbl 1101.62357
[15] Dette, H., Bretz, F., Pepelyshev, A. and Pinheiro, J. C. (2008). Optimal designs for dose finding studies. J. Amer. Statist. Assoc. 103 1225-1237. · Zbl 1205.62165
[16] Fan, S. K. and Chaloner, K. (2003). A geometric method for singular c -optimal designs. J. Statist. Plann. Inference 113 249-257. · Zbl 1033.62073
[17] Fedorov, V. V. (1972). Theory of Optimal Experiments . Academic Press, New York. · Zbl 0261.62002
[18] Fedorov, V. V. and Hackl, P. (1997). Model-Oriented Design of Experiments. Lecture Notes in Statist. 125 . Springer, New York. · Zbl 0878.62052
[19] Ford, I., Torsney, B. and Wu, C. F. J. (1992). The use of canonical form in the construction of locally optimum designs for nonlinear problems. J. Roy. Statist. Soc. Ser. B 54 569-583. · Zbl 0774.62080
[20] Gaffke, N. and Krafft, O. (1982). Exact D -optimum designs for quadratic regression. J. Roy. Statist. Soc. Ser. B 44 394-397. · Zbl 0496.62064
[21] Garrett, E. R. (1994). The Bateman function revisited: A critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. Journal of Pharmacokinetics and Biopharmaceutics 22 103-128.
[22] Gibaldi, M. and Perrier, D. (1982). Parmacokinetics , 2nd ed. Dekker, New York.
[23] Harville, D. (1976). Extension of the Gauss-Markov theorem to include the estimation of random effects. Ann. Statist. 4 384-395. · Zbl 0323.62043
[24] Mentré, F., Mallet, A. and Baccar, D. (1997). Optimal design in random-effects regression models. Biometrika 84 429-442. · Zbl 0882.62069
[25] Pázman, A. (1986). Foundations of Optimum Experimental Design . D. Reidel, Dordrecht. · Zbl 0588.62117
[26] Pinheiro, J. C. and Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed effects model. J. Comput. Graph. Statist. 4 12-35.
[27] Pukelsheim, F. (1993). Optimal Design of Experiments . Wiley, New York. · Zbl 0834.62068
[28] Retout, S. and Mentré, F. (2003). Further developments of the Fisher information matrix in nonlinear mixed-effects models with evaluation in population pharmacokinetics. Journal of Biopharmaceutical Statistics 13 209-227. · Zbl 1180.62182
[29] Retout, S., Duffull, S. and Mentre, F. (2001). Development and implementation of the Fisher information matrix for the evaluation of population pharmakokinetic designs. Computer Methods and Programs in Biomedicine 65 141-151.
[30] Retout, S., Mentré, F. and Bruno, R. (2002). Fisher information matrix for nonlinear mixed-effects models: Evaluation and application for optimal design of enoxaparin population pharmacokinetics. Stat. Med. 21 2623-2639.
[31] Sacks, J. and Ylvisaker, N. D. (1966). Designs for regression problems with correlated errors. Ann. Math. Statist. 37 66-89. · Zbl 0152.17503
[32] Sacks, J. and Ylvisaker, N. D. (1968). Designs for regression problems with correlated errors; many parameters. Ann. Math. Statist. 39 49-69. · Zbl 0165.21505
[33] Schmelter, T. (2007a). Considerations on group-wise identical designs for linear mixed models. J. Statist. Plann. Inference 137 4003-4010. · Zbl 1122.62068
[34] Schmelter, T. (2007b). The optimality of single-group designs for certain mixed models. Metrika 65 183-193. · Zbl 1106.62082
[35] Shargel, L. (1993). Applied Biopharmaceutics and Pharmacokinetics . Chapman & Hall, London.
[36] Silvey, S. D. (1980). Optimal Design . Chapman & Hall, London. · Zbl 0468.62070
[37] Thürmann, P., Neff, A. and Fleisch, J. (2004). Interference of Uzara glycosides in assays of digitalis glycosides. International Journal of Clinical Pharmacology and Therapeutics 42 281-284.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.