×

Topological inference for EEG and MEG. (English) Zbl 1202.62154

Summary: Neuroimaging produces data that are continuous in one or more dimensions. This calls for an inference framework that can handle data that approximate functions of space, for example, anatomical images, time-frequency maps and distributed source reconstructions of electromagnetic recordings over time. Statistical parametric mapping (SPM) is the standard framework for whole-brain inference in neuroimaging: SPM uses random field theory to furnish \(p\)-values that are adjusted to control family-wise error or false discovery rates, when making topological inferences over large volumes of space. Random field theory regards data as realizations of a continuous process in one or more dimensions. This contrasts with classical approaches like the Bonferroni correction, which consider images as collections of discrete samples with no continuity properties (i.e., the probabilistic behavior at one point in the image does not depend on other points).
We illustrate how random field theory can be applied to data that vary as a function of time, space or frequency. We emphasize how topological inference of this sort is invariant to the geometry of the manifolds on which data are sampled. This is particularly useful in electromagnetic studies that often deal with very smooth data on scalp or cortical meshes. This application illustrates the versatility and simplicity of random field theory and the seminal contributions of Keith Worsley (1951–2009), a key architect of topological inference.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C55 Biomedical imaging and signal processing
62M40 Random fields; image analysis
92C20 Neural biology

Software:

FMRISTAT; fda (R)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Barnes, G. and Hillebrand, A. (2003). Statistical flattening of MEG beamformer images. Human Brain Mapping 18 1-12.
[2] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 289-300. · Zbl 0809.62014
[3] Carbonell, F., Galán, L., Valdés, P., Worsley, K., Biscay, R. J., Díaz-Comas, L., Bobes, M. A. and Parra, M. (2004). Random field-union intersection tests for EEG/MEG imaging. NeuroImage 22 268-276.
[4] Chen, C. C., Kiebel, S. J. and Friston, K. J. (2008). Dynamic causal modelling of induced responses. NeuroImage 41 1293-1312.
[5] Chumbley, J. R. and Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage 44 62-70.
[6] Chumbley, J., Worsley, K., Flandin, G. and Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage 41 3057-3064.
[7] Friston, K. J., Frith, C. D., Liddle, P. F. and Frackowiak, R. S. J. (1991). Comparing functional (PET) images: The assessment of significant change. Journal of Cerebral Blood Flow and Metabolism 11 690-699.
[8] Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziotta, J. C. and Evans, A. C. (1994). Assessing the significance of focal activations using their spatial extent. Human Brain Mapping 1 214-220.
[9] Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D. and Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2 189-210.
[10] Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T. and Kilner, J. M. (2008). The functional anatomy of the MMN: A DCM study of the roving paradigm. NeuroImage 42 936-944.
[11] Hari, R. and Imada, T. (1999). Ipsilateral movement-evoked fields reconsidered. NeuroImage 10 582-588.
[12] Harrison, L. M., Penny, W., Daunizeau, J. and Friston, K. J. (2008). Diffusion-based spatial priors for functional magnetic resonance images. NeuroImage 41 408-423.
[13] Henson, R. N., Mattout, J., Singh, K. D., Barnes, G. R., Hillebrand, A. and Friston, K. (2007). Population-level inferences for distributed MEG source localization under multiple constraints: Application to face-evoked fields. NeuroImage 38 422-438.
[14] Howell, D. C. (1997). Statistical Methods in Psychology , 4th ed. 121-125. Duxbury Press, Belmont, CA.
[15] Kiebel, S. J. and Friston, K. J. (2004). Statistical parametric mapping for event-related potentials: I. Generic considerations. NeuroImage 22 492-502.
[16] Kiebel, S. J., Tallon-Baudry, C. and Friston, K. J. (2005). Parametric analysis of oscillatory activity as measured with EEG/MEG. Human Brain Mapping 26 170-177.
[17] Kiebel, S. J., Poline, J. B., Friston, K. J., Holmes, A. P. and Worsley, K. J. (1999). Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. NeuroImage 10 756-766.
[18] Kilner, J. M., Kiebel, S. J. and Friston, K. J. (2005). Applications of random field theory to electrophysiology. Neurosci. Lett. 374 174-175.
[19] Kilner, J. M., Marchant, J. and Frith, C. D. (2006). Modulation of the mirror system by social relevance. Social Cognitive and Affective Neuroscience 1 143-148.
[20] Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. and Baker, C. I. (2009). Circular analysis in systems neuroscience: The dangers of double dipping. Nat. Neurosci. 12 535-540.
[21] Maris, E. and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164 177-190.
[22] Pantazis, D., Nichols, T. E., Baillet, S. and Leahy, R. M. (2005). A comparison of random field theory and permutation methods for the statistical analysis of MEG data. NeuroImage 25 383-394.
[23] Park, H., Kwon, J., Youn, T., Pae, J., Kim, J., Kim, M. and Ha, K. (2002). Statistical parametric mapping of LORETA using high density EEG and individual MRI: Application to mismatch negativities in schizophrenia. Human Brain Mapping 17 168-178.
[24] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006
[25] Salmelin, R. and Hari, R. (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60 537-550.
[26] Salmond, C. H., Ashburner, J., Vargha-Khadem, F., Connelly, A., Gadian, D. G. and Friston, K. J. (2002). Distributional assumptions in voxel-based morphometry. NeuroImage 17 1027-1030.
[27] Singh, K. D., Barnes, G. R. and Hillebrand, A. (2003). Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing. NeuroImage 19 1589-1601.
[28] Taylor, J. E. and Worsley, K. J. (2007). Detecting sparse signal in random fields, with an application to brain mapping. J. Amer. Statist. Assoc. 102 913-928. · Zbl 1469.62353
[29] Worsley, K. J. (2007). Random field theory. In Statistical Parametric Mapping , Chapter 18. Academic Press, London, UK. · Zbl 1469.62353
[30] Worsley, K. J., Evans, A. C., Marrett, S. and Neelin, P. (1992). A three dimensional statistical analysis for CBF activation studies in the human brain. Journal of Cerebral Blood Flow and Metabolism 12 900-918.
[31] Worsley, K. J., Marrett, S., Neelin, P., Nandal, A. C., Friston, K. J. and Evans, A. C. (1996). A unified statistical approach for determining significant voxels in images of cerebral activation. Human Brain Mapping 4 58-73. · Zbl 1022.92021
[32] Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D. and Evans, A. C. (1999). Detecting changes in non-isotropic images. Human Brain Mapping 8 98-101. · Zbl 1022.92021
[33] Worsley, K. J., Liao, C., Aston, J., Petre, V., Duncan, G. H., Morales, F. and Evans, A. C. (2002). A general statistical analysis for fMRI data. NeuroImage 15 1-15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.