Mirebeau, Jean-Marie Optimal meshes for finite elements of arbitrary order. (English) Zbl 1202.65015 Constr. Approx. 32, No. 2, 339-383 (2010). Given a function \(f\) on a bounded domain \(\Omega \subset \mathbb R^2,\) the interpolation by finite elements with piecewise polynomials of degree \(m-1\) is studied. Specifically, there is the interest in minimizing the \(L_p\) error by optimizing the mesh such that a (nearly) minimal \(L_p\) norm of the interpolation error is achieved. To this, end the interpolation of homogeneous polynomials of degree \(m\) is studied. The results refer to the interpolation problem, while the optimization of the meshes for the solution of elliptic differential equations is governed by a different analysis. Reviewer: Dietrich Braess (Bochum) Cited in 11 Documents MSC: 65D05 Numerical interpolation 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs 65N15 Error bounds for boundary value problems involving PDEs Keywords:adaptive meshes; anisotropic finite elements; interpolation; elliptic differential equations Software:Mathematica; MMG3D; FreeFem++ PDF BibTeX XML Cite \textit{J.-M. Mirebeau}, Constr. Approx. 32, No. 2, 339--383 (2010; Zbl 1202.65015) Full Text: DOI arXiv OpenURL References: [1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. Teubner, Stuttgart (1999) · Zbl 0934.65121 [2] Babenko, V., Babenko, Y., Ligun, A., Shumeiko, A.: On asymptotical behavior of the optimal linear spline interpolation error of C 2 functions. East J. Approx. 12(1), 71–101 (2006) [3] Babenko, Y., Babenko, V., Ligun, A., Shumeiko, A.: On asymptotical behavior of the optimal linear spline interpolation error of C 2 functions. East J. Approx. 12(1), 71–101 (2006) [4] Bocher, M.: Introduction to Higher Algebra. Courier Dover Publications (2004). ISBN 0486495701, 9780486495705 · Zbl 0131.24804 [5] Boissonnat, J.-D., Wormser, C., Yvinec, M.: Locally uniform anisotropic meshing. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, 2008 · Zbl 1271.65032 [6] Bougleux, S., Peyré, G., Cohen, L.D.: Anisotropic geodesics for perceptual grouping and domain meshing. In: Proc. Tenth European Conference on Computer Vision (ECCV’08), Marseille, France, October 12–18, 2008 [7] Bourgault, Y., Picasso, M., Alauzet, F., Loseille, A.: On the use of anisotropic error estimators for the adaptative solution of 3-D inviscid compressible flows. Int. J. Numer. Methods Fluids 59(1), 47–74 (2009) · Zbl 1391.76462 [8] Cao, W.: An interpolation error estimate on anisotropic meshes in \(\mathbb{R}\) n and optimal metrics for mesh refinement. SIAM J. Numer. Anal. 45(6), 2368–2391 (2007) · Zbl 1157.65319 [9] Cao, W.: Anisotropic measure of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput. 29, 756–781 (2007) · Zbl 1136.65100 [10] Cao, W.: An interpolation error estimate in \(\mathbb{R}\)2 based on the anisotropic measures of higher order derivatives. Math. Comput. 77, 265–286 (2008) · Zbl 1149.65010 [11] Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation error in L p -norm. Math. Comput. 76, 179–204 (2007) · Zbl 1106.41013 [12] Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.-M.: Adaptive multiresolution analysis based on anisotropic triangulations. Preprint, Laboratoire J.-L. Lions (2008, submitted) · Zbl 1242.65293 [13] Dixmier, J.: Quelques aspects de la théorie des invariants. Gaz. Math. 43, 39–64 (1990) · Zbl 0708.14008 [14] Frey, P.J., George, P.L.: Mesh Generation. Application to Finite Elements, 2nd edn. ISTE, London, Wiley, Hoboken (2008) · Zbl 1156.65018 [15] Hartshorne, R.: Algebraic Geometry. Springer, New York (1999) · Zbl 0367.14001 [16] Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993). Translated by R. C. Laubenbacher · Zbl 0801.13001 [17] Labelle, F., Shewchuk, J.R.: Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 191–200 (2003) · Zbl 1375.68154 [18] Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211. Springer, New York (2004). (Corrected 4th printing, revised 3rd edn.) ISBN 978-0-387-95385-4 [19] Olver, P.J., Sapiro, G., Tannenbaum, A.: Affine invariant detection; edge maps, anisotropic diffusion and active contours. Acta Appl. Math. 59, 45–77 (1999) · Zbl 1005.53010 [20] Salmon, G.: Higher Plane Curves, 3rd edn. (1879). http://www.archive.org/details/117724690 · JFM 05.0341.01 [21] ShewChuk, J.R.: What is a good linear finite element. www.cs.berkeley.edu/\(\sim\)jrs/papers/elemj.pdf · Zbl 0948.90515 [22] A mathematica code for the map {\(\pi\)} h {\(\pi\)} . www.ann.jussieu.fr/\(\sim\)mirebeau/ [23] The 2-d anisotropic mesh generator BAMG. http://www.freefem.org/ff++/ (included in the FreeFem++ software) [24] A 3-d anisotropic mesh generator. http://www.math.u-bordeaux1.fr/\(\sim\)dobj/logiciels/mmg3d.php This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.